PRECODING TECHNIQUES FOR WIRELESS COMMUNICATIONS

    公开(公告)号:US20210359731A1

    公开(公告)日:2021-11-18

    申请号:US17246374

    申请日:2021-04-30

    Abstract: Methods, systems, and devices for wireless communications are described in which a base station may identify a null space matrix that lies within a null space of an effective channel matrix for communications between the base station and a user equipment (UE). An indication of the null space matrix may be provided to the UE, and the null space matrix used to determine modifications to a precoding matrix. The base station and UE may determine a redistribution matrix that provides a reduced variance of transmission powers for a number of transmission channels, where a product of the null space matrix and the redistribution matrix may be computed and added to the precoding matrix to generate a modified precoding matrix. The modified precoding matrix may be used to generate the communications from the base station and UE with reduced power variance across channels.

    COMPRESSED MEASUREMENT FEEDBACK USING AN ENCODER NEURAL NETWORK

    公开(公告)号:US20210266787A1

    公开(公告)日:2021-08-26

    申请号:US17180124

    申请日:2021-02-19

    Abstract: Methods, systems, and devices for wireless communications are described. A user equipment (UE) may perform a measurement operation to attain multiple measurements to report to a base station. The measurements may correspond to a first number of bits if reported. The UE may compress the measurements using an encoder neural network (NN) to obtain an encoder output indicating the measurements. This encoder output may include a second number of bits that is less than the first number of bits. The UE may report the encoder output to the base station in this compressed form. At the base station, the encoder output may be decompressed according to a decoder NN. Once the base station decompresses the encoder output, the UE and base station may communicate according to the measurements determined from the decompression. In some cases, the base station may perform load redistribution based on the measurements.

    CONTROL RESOURCE SET AND SEARCH SPACE SET CONFIGURATION FOR FULL DUPLEX OPERATION

    公开(公告)号:US20210136771A1

    公开(公告)日:2021-05-06

    申请号:US17084302

    申请日:2020-10-29

    Abstract: Generally, the described techniques provide for duplex mode configuration for control information (e.g., duplex mode configuration for communication of downlink control information). For example, duplex modes may be defined (e.g., as full duplex (FD) capable, FD only, half duplex (HD) only, etc.), and such duplex modes may be configured for control resource sets (CORESETs), search space (SS) sets, or both. In some examples, duplex modes configured for a CORESET/SS set may depend on the priority of information conveyed via the CORESET/SS set. For example, a CORESET/SS set for high priority or critical control information may be configured with a HD mode to avoid FD self-interference, while CORESET/SS set for other control information may be configured with a FD mode to improve spectrum efficiency. Techniques for resolving conflicting duplex mode configurations (e.g., when a HD mode is configured for a SS set within a CORESET configured with FD) are also described.

    COMMON CONTROL RESOURCE SET WITH USER EQUIPMENT-SPECIFIC RESOURCES

    公开(公告)号:US20200229172A1

    公开(公告)日:2020-07-16

    申请号:US16829732

    申请日:2020-03-25

    Abstract: User equipment (UE)-specific information may be transmitted within a control resource set configured to carry resources common to UEs within a system. The UE-specific information may be associated with a search space having an aggregation level different from aggregation levels used with the common control resources and may occupy different modulation symbols within the common control resource set (e.g., to support flexible scheduling for multiple UEs). A base station and UE may operate in a system using one or more control resource sets within a system bandwidth. The UE may detect common control resources by monitoring decoding candidates in the control resource set according to a first set of aggregation levels. The UE may detect UE-specific control resources by monitoring decoding candidates in the control resource set according to other aggregation levels. The UE and base station may communicate based on control information obtained from the monitoring.

    Common control resource set with user equipment-specific resources

    公开(公告)号:US10674485B2

    公开(公告)日:2020-06-02

    申请号:US15694143

    申请日:2017-09-01

    Abstract: User equipment (UE)-specific information may be transmitted within a control resource set configured to carry resources common to UEs within a system. The UE-specific information may be associated with a search space having an aggregation level different from aggregation levels used with the common control resources and may occupy different modulation symbols within the common control resource set (e.g., to support flexible scheduling for multiple UEs). A base station and UE may operate in a system using one or more control resource sets within a system bandwidth. The UE may detect common control resources by monitoring decoding candidates in the control resource set according to a first set of aggregation levels. The UE may detect UE-specific control resources by monitoring decoding candidates in the control resource set according to other aggregation levels. The UE and base station may communicate based on control information obtained from the monitoring.

    Search candidates in multi-link control channel

    公开(公告)号:US10547429B2

    公开(公告)日:2020-01-28

    申请号:US15875524

    申请日:2018-01-19

    Abstract: Some wireless communication systems may operate in frequency ranges that are associated with beamformed transmissions between wireless devices. In such systems, a user equipment (UE) may be configured to monitor physical downlink control channel (PDCCH) on multiple beam pair links. In order to decode relevant downlink control information (DCI), a UE may perform multiple blind decodes on a control region of a downlink transmission. Blind decoding may be resource-intensive (e.g., computationally complex, energy consuming, etc.), but some systems may be efficiently designed to support the desired PDCCH monitoring via multiple beam pair links without significantly increasing the number of blind decodes at the UE. Aspects of such a design may include non-uniform candidate restriction, beam pair link-specific search spaces, and random control channel element (CCE) mapping across a candidate search space.

    Downlink slot structure, channel placement, and processing timeline options

    公开(公告)号:US10420088B2

    公开(公告)日:2019-09-17

    申请号:US15613014

    申请日:2017-06-02

    Abstract: Aspects of the disclosure provide a slot structure (e.g., the arrangement of channels and pilot signals within a slot) that can relax the processing timeline for a wireless communication device. For example, in the first or initial symbol of a slot, control information may be frequency division multiplexed (FDM) with a demodulation reference signal (DMRS) or with user data. In some cases, delayed-processing data may be sampled, and the samples may be buffered at the receiving device, for processing later, after control information needed to process the data has been received and processed. Further aspects provide for payload pre-tapering. That is, when a device delays the processing of data bits, this can cause a processing bottleneck after that buffering delay. By virtue of various pre-tapering techniques described herein, the processing load needed to process the delayed-processing data can be reduced. Other aspects, embodiments, and features are also claimed and described.

Patent Agency Ranking