Abstract:
Disclosed embodiments pertain to the obtaining and utilization of Observed Time Difference of Arrival (OTDOA) assistance data. Cell timing information obtained based on measurements by a Mobile Station (MS) of neighbor cells may comprise cell timing offsets of the neighbor cells relative to a serving cell for the MS. OTDOA assistance data may be generated, where the OTDOA assistance data may comprise an OTDOA assistance data reference cell and a cell timing offset between the serving cell and an OTDOA assistance data reference cell, the reference cell being selected based on the received neighbor cell measurements. Embodiments disclosed also pertain to methods on an MS for performing measurements of neighbor cells comprising cell timing information for neighbor cells by requesting idle periods with a desired length from a base station to perform the measurements, and performing the requested measurements upon receiving confirmation that the idle periods have been configured.
Abstract:
A large volume of location related information, e.g., assistance data or location information, is transferred in separate messages between a server and a target by segmenting the location related information into a plurality of messages. If the connection between the server and target is released prior to completion of the transfer of the location related information, the transfer is resumed by sending the remaining messages after connection is reestablished. Each message is sent after receiving an acknowledgement of receipt. Thus, both the server and target can control the flow of the transfer by delaying the sending of one or more messages or delaying the sending of the acknowledgements of receipt.
Abstract:
Disclosed embodiments pertain to a method of generating a Positioning Reference Signal (PRS) sequence for a system comprising a plurality of physical transmitting antenna elements serving a single cell. In some embodiments, the method may comprise: assigning a distinct Physical Antenna Port (PAP) identifier (ID) to a subset of the plurality of physical transmitting antenna elements; and generating PRS sequences for the subset of the plurality of physical transmitting antenna elements, wherein each PRS sequence corresponds to a physical transmitting antenna element in the subset of the plurality of physical transmitting antenna elements, and each PRS sequence has a corresponding frequency shift based, at least in part, on the PAP ID (h) of the corresponding physical transmitting antenna element.
Abstract:
Systems, methods, apparatuses, and computer-readable media for providing radio frequency interference (RFI) awareness assistance data to global navigation satellite system (GNSS) receivers are described. In some embodiments, a first method includes receiving at a location server RFI situational information. The first method further includes maintaining at least one time and location dependent database of an RFI situation. The first method further includes sending at least one assistance data message to at least one receiver including the RFI situational information. In another embodiment, a second method includes receiving RFI awareness assistance data from a location server. The second method further includes adapting a position location measurement according to the received RFI awareness assistance data. The second method further includes calculating a location of the receiver based at least in part on the adapted position location measurement.
Abstract:
Various techniques are provided for Location Services (LCS) Assistance Data broadcast, for example for implementation in LTE and LTE-A systems. The embodiments described herein may use the LPP/LPPe positioning protocol, by making use of existing unsolicited Provide Assistance Data (PAD) messages. Embodiments avoid the need to define and implement a separate broadcast Assistance Data protocol. Additional exemplary embodiments for scheduling and verifying of the broadcast Assistance Data messages are described herein.
Abstract:
Methods, systems, and devices for transmit power control for positioning using non-serving cells are described. A user equipment (UE) may determine that an uplink reference signal may be associated with a positioning procedure. In some cases, the positioning procedure may include transmission, by the UE, of the reference signal to a non-serving cell, which may be farther away from the UE than a serving cell. The UE may determine an absence of a parameter associated with a transmit power for transmitting the reference signal. Based on the absence, the UE may determine the transmit power based on parameters received from a serving cell, based on configuration information, based on a message intercepted from the cell other than the serving cell, or based on other considerations or information.
Abstract:
Latency in location of a user equipment (UE) is reduced by requesting and scheduling the location of the UE in advance of the time of when it is needed. A positioning request from an external client or the UE may indicate the time that the location is to be determined or measured. A location management function (LMF) may manage and coordinate location measurements for the UE prior to the location determination time. The LMF may schedule downlink and/or uplink measurements to be performed at the desired time. Either the LMF or a location server associated with a serving base station for the UE may be assigned to receive positioning measurements and obtain the location of the UE. The location server or LMF may send the location to the UE or the external client. User plane transport may be used to further reduce latency.
Abstract:
Disclosed are methods and apparatuses for resolving aliasing ambiguities produced when using channel state information reference signal, a sounding reference signal (SRS) or other transmission as a positioning reference signal (PRS) occupying a subset of tones of a PRS bandwidth. The aliasing ambiguity results in a plurality of different possible positioning measurements, such as time of arrival (TOA), reference signal timing difference (RSTD), or reception to transmission difference (Rx−Tx). The aliasing ambiguity may be resolved using a previous position estimate that may be used to produce an approximation of the expected positioning measurement. A position estimate may be generated using a multiple stage PRS configuration, in which one or more stages provide a coarse position estimate that has no ambiguity, which can be used to resolve the ambiguity of a more accurate position estimate resulting from the PRS signal.
Abstract:
An entity in a wireless network is configured to increase transmission of a positioning reference signal (PRS) at each of a plurality of transmitters, where the increase in transmission of PRS at each of the plurality of transmitters is coordinated to avoid interference to or from non-PRS transmission in the wireless network. The increase in the transmission of PRS may be performed by a server, such as a location management function (LMF) or location management component (LMC), a base station, such as a gNB, ng-eNB, or eNB, or by a combination of the server and base station. The entity may determine the increase in transmission of the PRS in response to location requests for a plurality of user equipments (UEs), notification reports from a plurality of base stations, or requests for increased PRS from a plurality of UEs.
Abstract:
Disclosed are techniques for wireless communication. In an aspect, a user equipment (UE) operating in discontinuous reception (DRX) mode receives a DRX configuration, receives a reference signal resource configuration, determines, at least based on the DRX configuration and the reference signal resource configuration, whether an overlap exists between a reference signal occasion of a plurality of reference signal occasions of the reference signal resource configuration and an active time of the DRX configuration, receives or transmits at least based on a determined overlap, at least a first reference signal in the reference signal occasion, and receives or transmits, while remaining in an active state of the DRX configuration, at least based on the determined overlap, at least a second reference signal in remaining reference signal occasions of the plurality of reference signal occasions after expiration of the active time.