POSITIVE ELECTRODE ACTIVE MATERIAL PARTICLE
    114.
    发明公开

    公开(公告)号:US20240186486A1

    公开(公告)日:2024-06-06

    申请号:US18442450

    申请日:2024-02-15

    CPC classification number: H01M4/364 H01M4/505 H01M4/525 H01M2004/028

    Abstract: A positive electrode active material particle with little deterioration is provided. A power storage device with little deterioration is provided. A highly safe power storage device is provided. The positive electrode active material particle includes a first crystal grain, a second crystal grain, and a crystal grain boundary positioned between the crystal grain and the second crystal grain; the first crystal grain and the second crystal grain include lithium, a transition metal, and oxygen; the crystal grain boundary includes magnesium and oxygen; and the positive electrode active material particle includes a region where the ratio of the atomic concentration of magnesium in the crystal grain boundary to the atomic concentration of the transition metal in first crystal grain and the second crystal grain is greater than or equal to 0.010 and less than or equal to 0.50.

    SECONDARY BATTERY, METHOD FOR MANUFACTURING POSITIVE ELECTRODE ACTIVE MATERIAL, PORTABLE INFORMATION TERMINAL, AND VEHICLE

    公开(公告)号:US20230052499A1

    公开(公告)日:2023-02-16

    申请号:US17778538

    申请日:2020-11-16

    Abstract: Secondary batteries using lithium cobalt oxide as positive electrode active materials have a problem of a decrease in battery capacity due to repeated charging/discharging, for example. A positive electrode active material particle which hardly deteriorates is provided. In a first step, a container in which a lithium oxide and a fluoride are set is placed in a heating furnace, and in a second step, the inside of the heating furnace is heated in an atmosphere containing oxygen. The heating temperature of the second step is from 750° C. to 950° C., inclusive. By the manufacturing method, fluorine can be contained in the positive electrode active material particle to increase the wettability of the surface of the positive electrode active material so that the surface of the positive electrode active material is homogenized and planarized. The crystal structure of the thus manufactured positive electrode active material is unlikely to be broken in repeated high-voltage charging/discharging. Thus, secondary batteries using the positive electrode active material having such a feature have greatly improved cycle characteristics.

Patent Agency Ranking