Abstract:
An electric vehicle includes an inverter unit and an ECU. The inverter unit or the ECU includes a magnetic force estimator that estimates a magnetic force of a permanent magnet structure associated with a motor rotor of a motor unit. The inverter unit or the ECU may also include a determiner for the estimated magnetic force and an abnormalities-responsive motor drive limiter. The estimator is configured to estimate, according to a predefined rule, the magnetic force, based on at least two detection signals selected from a group consisting of a detection signal indicating a rotational frequency of the motor unit, a detection signal indicating a motor voltage of the motor unit and a detection signal indicating a motor current of the motor unit.
Abstract:
An electric vehicle including a plurality of motors for individually driving left and right drive wheels is provided with a motor abnormality detector for detecting the occurrence of an abnormality in each of the motors and one side abnormality response controller. The one side abnormality response controller controls, when an abnormality other than a motor stoppage is detected the motor in the wheel of either one of the left and right, which are arranged at the same forward or rearward position of the vehicle, by the motor abnormality detector, the motor for the other wheel to approach the same condition as that of the motor in which the abnormality has been detected.
Abstract:
An output member is connected with an input member through three sets of link mechanisms for alteration in attitude. The link mechanism includes end portion link mechanisms on an input side and an output side, respectively, and an intermediate link member. The link mechanism is such that a geometric model of each of the link members expressed by lines represents such a shape as an input side portion and an output side portion relative to a center of the intermediate link member are symmetrical with each other. By actuating two or more sets of the link mechanisms by means of a link mechanism drive source, the attitude of the output member is controlled. Through the inside of an arrangement of the link mechanisms, a flexible wire is provided for transmitting a rotational force in a direction of arrangement of the input and output members.
Abstract:
In this centrifugal blood pump apparatus, one permanent magnet is provided in one surface of an impeller, a second permanent magnet is provided in an inner wall of a blood chamber, a third permanent magnet is provided in the other surface of the impeller, and a fourth permanent magnet and a rotor for driving the impeller to rotate are provided, with an diaphragm being interposed. An amount of change in attractive force between the first permanent magnet and the second permanent magnet and an amount of change in attractive force between the third and fourth permanent magnets when the impeller is eccentric are made substantially equal to each other. Therefore, a levitation position of the impeller can always be maintained at a substantially central position in a housing.
Abstract:
A diagnostic apparatus for diagnosing a drive motor of a vehicle includes a start-up abnormality detection section to detect coil temperature, coil resistance or insulation resistance of a motor coil during a non-traveling time in which electric power supply is applied and to determine occurrence of abnormality in the motor coil when the coil temperature is greater than a threshold value or the coil resistance or insulation resistance is greater than a threshold value, and a travel abnormality detection section to detect coil temperature, rotation number of the motor, a motor applied voltage and a motor current during traveling of the vehicle and to determine occurrence of abnormality in the motor coil when the coil temperature is greater than a threshold value or the relation between the motor applied voltage and the motor current relative to the rotation number fails to fall within a predetermined range.
Abstract:
An electric vehicle is proposed which can achieve early detection of abnormal short-circuit of motor coils, thus avoiding various driving problems. The electric vehicle includes a motor unit configured to drive a wheel. The motor unit includes a synchronous motor with three-phase motor coils. The three-phase motor coils include a first motor coil, a second motor coil and a third motor coil of different phases. One end of the first motor coil, one end of the second motor coil and one end of the third motor coil are connected with each other at a neutral point in a star connection. The electric vehicle also includes an abnormal short-circuit monitor configured to detect an abnormal short-circuit of the motor coils, and also includes an abnormalities-responsive disconnection unit configured to electrically disconnect the motor coils from the neutral point.
Abstract:
An electric vehicle includes a malfunction detector configured to continuously monitor a torque command from an ECU as well as one of the followings: signals indicating a rotational frequency of a motor unit; signals indicating a rotational frequency of a wheel driven by the motor unit; signals indicating a rotational direction of the motor unit; signals indicating a rotational direction of the wheel driven by the motor unit; and a motor current, and detect, according to a predefined rule, a malfunction of the motor unit, based on the monitoring information. The electric vehicle also includes a malfunction-responsive controller configured to cause at least one of shut-off of a drive current to the motor unit and braking with a mechanical brake, if the malfunction detector detects a malfunction.
Abstract:
An electric vehicle includes a motor unit to drive a wheel. The electric vehicle also includes a control system that controls the motor unit. The control system includes an inverter. The electric vehicle also includes a temperature sensor to sense temperature Tmc of the motor coils of the motor unit or a temperature sensor to sense temperature Tic of the inverter. The electric vehicle also includes a limiter to, if the temperature Tmc sensed by the sensor exceeds a motor coils temperature threshold, reduce a motor current of the unit until a derivative dTmc/dt of the sensed temperature Tmc with time t drops to zero or below, or to, if the temperature Tic sensed by the sensor exceeds an inverter temperature threshold, limit a current command to the inverter until a derivative dTic/dt of the sensed temperature Tic with time t drops to zero or below.
Abstract:
A flexible wire assembly of a compact structure that can transmit the torque for a high speed rotation even in a bent condition is provided. The flexible wire assembly includes a flexible outer tube, in which a flexible inner wire having its opposite ends defining rotation input and output ends, respectively, is rotatably supported by means of a plurality of rolling bearings. Spring elements are employed for applying preloads to those rolling bearings. The use is also made of a speed reducing mechanism for reducing in speed and outputting rotation of the inner wire. The spring elements include inner ring spring elements and outer ring spring elements that are alternately arranged over the length of the inner wire.
Abstract:
A centrifugal blood pump apparatus includes a plurality of permanent magnets (17) in an impeller (10) in a blood chamber (7), a plurality of coils (20) in a motor chamber (8), and a magnetic element (18) in each of the coils (20). The magnetic elements (18) are made shorter than the coils (20) to lower attractive force between the magnetic elements (18) and the permanent magnets (17) in the impeller (10), to set a large gap between the magnetic elements (18) and the permanent magnets (17). As a result, axial attractive force and negative rigidity can be lowered while required torque is satisfied.