Abstract:
Techniques for customer charge accounting in a soft proofing system take into account one or more factors associated with a hard copy proofing job simulated by the soft proofing system. The charge for the soft proofing job can be correlated, at least in part, to the overall cost of the hard copy proofing job emulated by the soft proofing job. The factors use to calculate the customer charge for a soft proofing job may include, for example, comparable hard copy equipment costs, comparable hard copy media costs, hard copy delivery costs, avoidance of delivery and production delays relative to hard copy proofing, and the number of users that view the hard copy proofing job. A value scale factor may be applied to a base cost for a given soft proof, thereby yielding a cost that can be charged to the customer.
Abstract:
A kit for making a relief image that includes a film made of an infrared-imageable material and a separate imageable article comprising a photosensitive material disposed on a substrate. The film may be used to form a mask image that is opaque to a curing radiation by exposing the infrared-imageable material to infrared radiation. The mask image may then be transferred to the photosensitive material. The resulting assembly may be exposed to the curing radiation resulting in exposed and unexposed areas of the photosensitive material. Finally, the photosensitive material and mask image may be developed with a suitable developer to form a relief image.
Abstract:
The present invention provides a positive-working, thermally imageable element generally comprising a multi-layered imageable coating. The invention provides an imageable element comprising a substrate, an ink-receptive top layer, and an underlayer, the underlayer including a specific copolymer described herein. The copolymer can be a polymer comprising constitutional units derived from: a) a monomer having a cyclic urea group; b) a monomer comprising an N-substituted maleimide; c) a (meth)acrylamide or (meth)acrylate monomer; and d) a (meth)acrylic acid or vinyl benzoic acid monomer. In another embodiment, the copolymer can be a polymer comprising constitutional units derived from: a) a monomer having a cyclic urea group; b) a (meth)acrylic acid or vinyl benzoic acid monomer; c) and a (meth)acrylonitrile monomer. The imageable element may be used to prepare a lithographic printing plate that is resistant to press chemistry and can optionally be baked to increase press runlength.
Abstract:
Radiation-sensitive element comprising (a) a substrate with at least one hydrophilic surface and (b) a radiation-sensitive coating on at least one hydrophilic surface of the substrate, wherein the coating comprises: (i) at least one free-radical polymerizable monomer and/or oligomer and/or polymer with at least one ethylenically unsaturated group each, (ii) at least one absorber selected from photoinitiators and sensitizers, which is capable of absorbing radiation of a wavelength in the range of 250 to 1,200 nm and (iii) at least one stabilizer comprising in its molecule at least one group capable of inhibiting free-radical polymerization, and at least one other group capable of sorption at the hydrophilic surface of the substrate.
Abstract:
A process for the production of lithographic printing plate precursors with a coating comprising a diazo resin is described, wherein a solvent mixture comprising (i) 2 to 9.9 wt.-% 1-methoxy-2-propanol, (ii) 20 to 50 wt.-% of at least one ketone with a boiling point below 130° C., (iii) 20 to 60 wt.-% of at least one alkanol with a boiling point below 120° C., and (iv) 10 to 30 wt.-% ethyl lactate, and a slot coater are used to produce the printing plate precursors.
Abstract:
A radiation-sensitive patterning composition comprising: (1) at least one acid generating compound selected from the group of compounds of formulae (I) or (II): wherein R1, R2, R3, R4, R5, and R6, are individually selected from the group consisting of a hydrogen atom, nitro group, hydroxyl group, a carbonyl group, a halogen atom, a cyano group and an unsubstituted or substituted alkyl group, an unsubstituted or substituted cycloalkyl group; an unsubstituted or substituted alkoxy group, or an unsubstituted or substituted aryl group; wherein X+ represents an onium ion selected from the group consisting of diazonium, iodonium, sulfonium, phosphonium, bromonium, chloronium, oxysulfoxonium, oxysulfonium, sulfoxonium, selenium, tellurium and arsenium; and wherein n is an integer from 4 to 100; (2) at least one cross-linking agent cross-linkable by an acid; (3) at least one polymer compound capable of reacting with the cross-linking agent; and (4) at least one infrared absorbing compound.
Abstract:
Techniques are described for color management of halftone prints by direct modification of halftone dot perimeters within bi-level, halftoned bitmap images. According to the halftone print color management techniques, border pixels of the halftone dots are spatially selected to be turned on or off in order to appropriately shrink or grow the halftone dots. The bitmap image may be prepared to create both a halftone proof and printing plates. Therefore, contrary to conventional continuous-tone color management techniques, direct halftone bitmap modification minimizes dot structure differences between data used to produce a proof and corresponding printing plates. The perimeter of a halftone dot within a bitmap image is modified by applying a local threshold value to a distance mapped bitmap image. The bitmap image may be bipolar distance mapped (BDM) to allow for shrinking or growing of the halftone dots by varying a threshold value.
Abstract:
The present invention provides a thermally sensitive composition that may be coated as a water-borne material onto a substrate to yield a printing plate precursor having an imageable coating. The thermally sensitive composition comprises a sulfated phenolic resin. The sulfated phenolic resin may be a sulfated novolak resin or a sulfated resole resin, for example. The thermally sensitive composition may include a water-soluble binder, such as polyvinyl pyrrolidone, and a radiation-absorbing component. The invention also provides a printing plate precursor that is developed in water after imaging. The precursor does not require chemical development with a developing solution containing organic solvents or inorganic additives. The imaged precursor is on-press-developable when used with a fountain solution. Methods for making and using the precursor are also provided.
Abstract:
The present invention provides a receptor element for use in thermal transfer imaging. The receptor element includes a coating having a polymeric binder and a biguanide bleaching agent. The biguanide bleaching agent is capable of bleaching an infrared-absorbing dye when the biguanide bleaching agent and the infrared-absorbing dye are in contact. A particularly suitable biguanide bleaching agent is 1-(o-tolyl)biguanide. The invention also provides compositions and methods for manufacturing a receptor element. Also provided by the invention is an imaging system for thermal transfer imaging. The imaging system includes a color-bearing element and a bleaching element, wherein the bleaching element includes a coating having a polymeric binder and a biguanide bleaching agent. The invention further provides methods useful in the production of integral proofs.
Abstract:
The present invention provides an imageable element including a lithographic substrate and an imageable layer disposed on the substrate. The imageable layer includes a radically polymerizable component, an initiator system capable of generating radicals sufficient to initiate a polymerization reaction upon exposure to imaging radiation, and a polymeric binder having a hydrophobic backbone and including constitutional units having a pendant group including a hydrophilic poly(alkylene oxide) segment. The imageable element can be developed using an aqueous developer solution. Alternatively, the imageable element can be developed on-press by contact with ink and/or fountain solution.