Abstract:
An apparatus for measuring time interval between two edges of a clock signal and includes an edge generator, a first multi-tap delay module, a second multi-tap delay module, and a multi-element phase detector. The edge generator produces a first edge at a first output node and a second selected edge at a second output node. First multi-tap delay module provides a first incremental delay at each tap to the first edge. Second multi-tap delay module provides a second incremental delay at each tap to the second selected edge. Each element of the multi-element phase detector has first and second input terminals. The first input terminal is coupled to a selected tap of the first multi-tap delay module and the second input terminal is coupled to a corresponding tap of the second multi-tap delay module. The output terminals of the multi-element phase detector provide the value of the time interval.
Abstract:
A circuit comprising: a device determiner configured to, in a first mode of operation, receive a device selection signal via at least one of: at least one control line and at least one signal line; and a device router configured to, in a second mode of operation, route signals between the at least one of: at least one control line and at least one signal line and at least one device dependent on the device selection signal.
Abstract:
A memory circuit includes a memory cell configured to be re-writable. A write enable circuit is configured to enable writing a signal via a pair of bit lines to the memory cell depending on a write signal. A charge supply circuit is configured to supply a charge to at least one of the pair of bit lines. A charge supply controller is configured to control the charge supply circuit to supply the charge dependent on at least one of the temperature of the memory circuit and the potential difference supply of the memory circuit.
Abstract:
A first sensing circuit has input terminals coupled to a true differential signal line and a complementary differential signal line. A second sensing circuit also has input terminals coupled to said true signal and said complementary signal. Each sensing circuit has a true signal sensing path and a complementary signal sensing path. The first sensing circuit has an imbalance that is biased towards the complementary signal sensing path, while the second sensing circuit has an imbalance that is biased towards the true signal sensing path. Outputs from the first and second sensing circuits are processed by a logic circuit producing an output signal that is indicative of whether there a sufficient differential signal for sensing has been developed between the true differential signal line and the complementary differential signal line.
Abstract:
A first circuit has a reset input. A second circuit is configured to be reset and provide an output. A test circuit is configured to test the first circuit and second circuit. The test circuit is configured such that a fault with the first circuit and said second circuit is determined in dependence on an output of the first circuit.
Abstract:
Signal synchronizing systems and methods are disclosed. A signal synchronizing system includes a sequential logic circuit to receive an input signal and to generate a plurality of intermediate signals from the input signal based on a clock signal. A logic circuit combines the intermediate signals to generate an output signal. A signal receiver includes a microcontroller and a signal synchronizer coupled to the microcontroller. The signal synchronizer includes a sequential logic circuit to receive an input signal from a transmitter and to generate a plurality of intermediate signals from the received input signal based on a clock signal. A logic circuit combines the intermediate signals to generate an output signal.
Abstract:
A read only memory cell circuit is provided. The memory cell circuit includes at least one memory cell. A pair of bit lines associated with each memory cell is provided which form a complementary output. The at least one memory cell is configured to be coupled to first or second of the bit line pair.
Abstract:
A complementary read-only memory (ROM) cell includes a transistor; and a bit line and a complementary bit line adjacent to the transistor; wherein a drain terminal of the transistor is connected to one of the bit line and the complementary bit line based on data programmed in the ROM cell.
Abstract:
An embodiment of the present invention discloses a system and method for decoding multiple independent encoded audio streams using a single decoder. The system includes one or more parsers, a preprocessor, an audio decoder, and a renderer. The parser extracts individual audio frames from each input audio stream. The preprocessor combines the outputs of all parsers into a single audio frame stream and enables sharing of the audio decoder among multiple independent encoded audio streams. The audio decoder decodes the single audio frame stream and provides a single decoded audio stream. And the renderer renders the individual reconstructed audio streams from the single decoded audio stream.
Abstract:
Memory devices and methods of operating a memory cell are disclosed in which a bitline can be grounded after charge sharing with an electrically floating ground line and before writing data to the memory cell. An electric potential of an upper power supply node of a memory cell can be lowered and an electric potential of a lower power supply node of the memory cell can be raised before writing data to the memory cell.