Module substrate antenna and module substrate using same

    公开(公告)号:US11942701B2

    公开(公告)日:2024-03-26

    申请号:US17756369

    申请日:2020-12-01

    Inventor: Jun Koujima

    Abstract: A module substrate antenna (1) includes a first coil (7) and a second coil (8) that are connected in parallel. The first coil (7) is composed of a pattern in which a spiral first antenna coil pattern (3a) and a spiral second antenna coil pattern (5a) are interlayer-connected in series. The second coil (8) is composed of a pattern in which a spiral third antenna coil pattern (4a) and a spiral fourth antenna coil pattern (6a) are interlayer-connected in series. The coil patterns are arranged in order of the first antenna coil pattern (3a), the third antenna coil pattern (4a), the second antenna coil pattern (5a), and the fourth antenna coil pattern (6a).

    Lithium nickelate-based positive electrode active substance particles and process for producing the same, and non-aqueous electrolyte secondary battery

    公开(公告)号:US11552292B2

    公开(公告)日:2023-01-10

    申请号:US16805990

    申请日:2020-03-02

    Abstract: The present invention provides lithium nickelate-based positive electrode active substance particles having a high energy density which are excellent in charge/discharge cycle characteristics when highly charged, and hardly suffer from generation of gases upon storage under high-temperature conditions, and a process for producing the positive electrode active substance particles, as well as a non-aqueous electrolyte secondary battery. The present invention relates to positive electrode active substance particles each comprising a core particle X comprising a lithium nickelate composite oxide having a layer structure which is represented by the formula: Li1+aNi1−b−cCobMcO2 wherein M is at least one element selected from the group consisting of Mn, Al, B, Mg, Ti, Sn, Zn and Zr; a is a number of −0.1 to 0.2 (−0.1•a•0.2); b is a number of 0.05 to 0.5 (0.05•b•0.5); and c is a number of 0.01 to 0.4 (0.01•c•0.4); a coating compound Y comprising at least one element selected from the group consisting of Al, Mg, Zr, Ti and Si; and a coating compound Z comprising an Li element, in which a content of lithium hydroxide LiOH in the positive electrode active substance particles is not more than 0.40% by weight, a content of lithium carbonate Li2CO3 in the positive electrode active substance particles is not more than 0.65% by weight, and a weight ratio of the content of lithium carbonate to the content of lithium hydroxide is not less than 1.

    R-T-B-based rare earth magnet particles, and bonded magnets containing R-T-B-based rare earth magnet particles

    公开(公告)号:US11120932B2

    公开(公告)日:2021-09-14

    申请号:US14205894

    申请日:2014-03-12

    Abstract: An object of the present invention is to enhance a coercive force of magnetic particles by promoting formation of a continuous R-rich grain boundary phase in a crystal grain boundary of a magnetic phase of the particles, and to thereby obtain R-T-B-based rare earth magnet particles further having a high residual magnetic flux density. The present invention relates to production of R-T-B-based rare earth magnet particles capable of exhibiting a high coercive force even when a content of Al therein is reduced, and a high residual magnetic flux density, in which formation of an R-rich grain boundary phase therein can be promoted by heat-treating Al-containing R-T-B-based rare earth magnet particles obtained by HDDR treatment in vacuum or in an Ar atmosphere at a temperature of not lower than 670° C. and not higher than 820° C. for a period of not less than 30 min and not more than 300 min.

    Ferrite ceramics, ferrite sintered plate and ferrite sintered sheet

    公开(公告)号:US10128029B2

    公开(公告)日:2018-11-13

    申请号:US15032711

    申请日:2014-10-30

    Abstract: An object or technical task of the present invention is to provide a ferrite sintered sheet having a dense ferrite microfine structure which has a large μ′ value, a small μ″ value, and a small temperature-dependent change of the μ′ value thereof. The present invention relates to a ferrite ceramics having a composition comprising 47.5 to 49.8 mol % of Fe2O3, 13.5 to 19.5 mol % of NiO, 21 to 27 mol % of ZnO, 7.5 to 12.5 mol % of CuO and 0.2 to 0.8 mol % of CoO, all of the molar amounts being calculated in terms of the respective oxides, the ferrite ceramics further comprising 0.2 to 1.4% by weight of SnO2 and 0.005 to 0.03% by weight of S and having a density of 5.05 to 5.30 g/cm3; and a ferrite sintered sheet comprising the ferrite sintered plate on a surface of which a groove or grooves are formed, and an adhesive layer and/or a protective layer formed on the ferrite sintered plate.

Patent Agency Ranking