Abstract:
Systems for planning delivery of radiation dose to a target region within a subject comprise a processor configured to: initialize a first plurality of control points located on a trajectory, the trajectory comprising relative movement between a radiation source and the subject, wherein initializing the first plurality of control points comprises assigning, to each the first plurality of control points, one or more axis positions which specify a position of the radiation source relative to the subject; specify a second plurality of control points along the trajectory, the second plurality of control points comprising a larger number of control points than the first plurality of control points; and iteratively optimize a simulated dose distribution over the second plurality of control points to thereby determine a radiation delivery plan by assigning each of the second plurality of control points optimized values for one or more radiation delivery parameters.
Abstract:
Methods for planning delivery of radiation dose to a target region within a subject comprise: initializing a first plurality of control points located on a trajectory, the trajectory comprising relative movement between a radiation source and the subject, wherein initializing the first plurality of control points comprises assigning, to each the first plurality of control points, one or more axis positions which specify a position of the radiation source relative to the subject; specifying a second plurality of control points along the trajectory, the second plurality of control points comprising a larger number of control points than the first plurality of control points; and iteratively optimizing a stimulated dose distribution over the second plurality of control points to thereby determine a radiation delivery plan by assigning each of the second plurality of control points optimized values for one or more radiation delivery parameters.
Abstract:
Systems for planning delivery of radiation dose to a target region within a subject comprise a processor configured to: iteratively optimize a simulated dose distribution relative to a set of one or more optimization goals comprising a desired dose distribution in the subject over a first plurality of control points located on a trajectory, the trajectory comprising relative movement between a treatment radiation source and the subject; reach one or more initial termination conditions, and after reaching the one or more initial termination conditions: specify a second plurality of control points along the trajectory, the second plurality of control points comprising a larger number control points than the first plurality of control points; and iteratively optimize a simulated dose distribution relative to the set of one or more optimization goals over the second plurality of control points to thereby determine a radiation delivery plan.
Abstract:
Systems for planning delivery of radiation dose to a target region within a subject comprise a processor configured to: initialize a first plurality of control points located on a trajectory, the trajectory comprising relative movement between a radiation source and the subject, wherein initializing the first plurality of control points comprises assigning, to each the first plurality of control points, one or more axis positions which specify a position of the radiation source relative to the subject; specify a second plurality of control points along the trajectory, the second plurality of control points comprising a larger number of control points than the first plurality of control points; and iteratively optimize a simulated dose distribution over the second plurality of control points to thereby determine a radiation delivery plan by assigning each of the second plurality of control points optimized values for one or more radiation delivery parameters.
Abstract:
Systems for delivering radiation dose to a target area within a subject comprise: a radiation source for outputting a radiation beam; a support for supporting the subject; a movement mechanism for moving the radiation source relative to the subject along a trajectory; one or more sensors for monitoring a position of the subject; and a controller configured, in accordance with a radiation delivery plan, to: determine the position from one or more signals received from the one or more sensors; deactivate delivery of the treatment radiation beam upon determining that the position is outside of an acceptable range; and reactivate delivery of the treatment radiation beam upon determining that the position is within the acceptable range, to thereby deliver dose to the subject according to the radiation delivery plan.
Abstract:
An inverse planning method that is capable of controlling the appearance of the implanted fiducial(s) in segmented IMRT fields for cine MV or combined MV/kV image-guided IMRT is provided. The method for radiation treatment includes computing a radiation treatment plan and delivering beams to a target in accordance with the radiation treatment plan, where computing the radiation treatment plan includes introducing a penalty in an inverse planning objective function optimization calculation to discourage or avoid blockage of one or more fiducials in optimized multi-leaf collimator (MLC) apertures.
Abstract:
The present invention is directed to a data processing method for determining a treatment plan for radiation therapy treatment of at least two spatially separate targets by means of a treatment device constituted to treat the at least two targets by means of one or more sub-beams during a treatment time, the one or more sub-beams constituting at least one treatment beam which is to pass through the at least two targets in accordance with a treatment plan during the treatment time, the treatment device being further constituted to allow for simultaneous treatment of the at least two targets by at least two of the sub-beams at least during a time interval during the treatment time.
Abstract:
The subject matter described herein provides methods for developing an IMRT treatment plan for a radiotherapy system. In one aspect, the method can include providing initial treatment parameters. These parameters can include a number of isotopic beams, a transmission angle for each beam, a prescribed dose for a target, and dose volume histogram constraints. The method can further include determining an initial fluence map including one or more beamlets. The initial fluence map can specify a fluence value for each beamlet. The method can further include determining a delivery sequence for the fluence values in the initial fluence map. The delivery sequence can include one or more apertures formed by the leaves of a collimator. These apertures can have a specified size constrained to substantially less than a maximum size associated with the collimator, when the isotopic beam is near a critical structure. Related apparatus and systems are also described.
Abstract:
Methods and apparatus for the management and provision of radiotherapy are described in which values for dosimetric parameters are re-evaluated just prior to treatment, on the basis of the treatment plan as loaded into the radiotherapy apparatus, and during treatment, on the basis of monitored machine parameters. By displaying dosimetric parameters rather than complicated machine parameters, the technician operating the radiotherapy apparatus is able to monitor the dose provided to a patient undergoing therapy. Misadministration of radiation as a result of corrupted data or corrupted control signals are prevented.
Abstract:
Methods and apparatus are provided for planning and delivering radiation treatments by modalities which involve moving a radiation source along a trajectory relative to a subject while delivering radiation to the subject. In some embodiments the radiation source is moved continuously along the trajectory while in some embodiments the radiation source is moved intermittently. Some embodiments involve the optimization of the radiation delivery plan to meet various optimization goals while meeting a number of constraints. For each of a number of control points along a trajectory, a radiation delivery plan may comprise: a set of motion axes parameters, a set of beam shape parameters and a beam intensity.