Abstract:
Embodiments provide an electric lug loader system. An electric lug loader may include a shaft assembly rotatably mounted to a frame that extends across a flow path. The shaft assembly may have shafts arranged radially around, and parallel to, the rotational axis of the shaft assembly, clamp members arranged along each of the shafts, support members arranged radially around the rotational axis and across the flow path, and electric drives coupled to the shafts. Conveyors may be coupled with the frame and spaced apart across the flow path upstream and/or downstream of the shaft assembly. Additional drives may be coupled with the shaft assembly and the conveyors. A controller may be configured to synchronize the drives to engage successive workpieces between the clamp members and the support members and deposit the workpieces onto a lugged conveyor. Other embodiments provide related methods and systems.
Abstract:
The present invention concerns a separation device for separating a rod-like element from a plurality of rod-like elements stored in a storage. The separation device may include a storage space having an approximately V-shaped cross section, for storing a plurality of at least approximately horizontally aligned rod-like elements, wherein the storage space includes at least a front wall element, a rear wall elements, and two side wall elements, having a bottom section and a top section. Moreover, a first discharge unit may be included for discharging a single rod-like element out of the plurality of rod-like elements stored in the storage space.
Abstract:
The present invention relates to means for feeding blanks into the thread rolling part of a thread rolling machine in accurate timing and accurate position. A transport screw for transporting blanks e.g. in a thread rolling machine is disclosed, said transport screw comprises a transport helix for transporting a blank along said transport screw when said transport screw rotates, said transport screw further comprises a feeding area being a widening of said transport helix, whereby said feeding area can receive and feed said blank into said transport helix upon rotation of said transport screw. Further, a method of feeding blanks into a transport screw and a feeding system comprising a transport screw, a blank height adjustment mechanism and a blank alignment mechanism are disclosed.
Abstract:
A device (10) for orienting tubular cores made of card for supporting rolls of toilet or kitchen paper includes elements for imparting an angular movement to each long item (11) in such a way that it is fed out of the device at a suitable angle. The elements for the angular orientation of the item (11) are designed to cause the item to be fed forward while keeping it substantially-transversal to the direction of feed and include first mobile members (12) for feeding a corresponding portion of the item (11) and extending along a respective path, which has a curved section (12a) , and second mobile members (14) for feeding a second portion of the item (11) and extending along a respective path having a curved section (14a) which is concentric with and radially inside the curved section (12a) of the first mobile feed members (12).
Abstract:
In order to separate rod-shaped bodies from a bundle of bodies, the surface of an uppermost body in the bundle is determined in a separation apparatus by a sensor, which body is then seized laterally of the sensor by a first gripper and is vertically lifted, whereupon a further gripper engages under said body, laterally of the first gripper unit. The further gripper is then moved to the other end region of the body, with the body being lifted out of the bundle. Next, said body is moved to a deposition location by both grippers.
Abstract:
A transfer arrangement (10) for gripping articles (at 60) comprises a central wheel body with a multiplicity of arms (20), which can be pivoted about a first axis (23) in each case, articulated along its periphery. The arms (20) have a gripper (60) for receiving in each case one or more articles (15). Each gripper (60) can be rotated about a second axis (33) for predetermined positioning of the articles, while the connecting body (30) can be rotated about the first axis (23). The rotary movement of the gripper (60), then, can be transferred to the gripper (60), rotating about the second axis (33), via a shaft (28) arranged along the first axis (23), with the aid of a transfer element (25, 26, 27). Finally, a third axis (43) is arranged on the connecting body (30), between the first and second axes (23, 33). This allows rotation of the connecting body (30) to be transferred in a controlled manner to the connecting body (30), at the location of the first axis (33), via a shaft (49) arranged along the third axis (43), with the aid of a transfer element (45, 46, 47). This means that articles (15) can be tracked.
Abstract:
A system for bundling long ferrous products comprises a roller table for delivering the products longitudinally to a receiving station. A cradle is spaced laterally from the receiving station and is constructed and arranged to receive and accumulate the products in bundle form. A stacker is positioned between the receiving station and the cradle, and a pre-stacker is positioned between the stacker and the receiving station. A transport system laterally advances products from the receiving station to the pre-stacker, and the pre-stacker operates in concert with the transport system to pre-stack multiple layers of the products into sub-bundles and to transfer the sub-bundles to the stacker, which then operates to deposit the sub-bundles in the cradle.
Abstract:
A method and machine separates profiled elements from a plurality of profiled elements. The machine includes a structure having opposed first and second ends and opposed sides, the structure receiving profiled elements extending between the first and second ends. A first separating device more evenly distributes the profiled elements between the sides. A displacement member displaces a portion of the profiled elements away from the remainder of the profiled elements. A gripper receives the portion of the separated profiled elements, the gripper moving the separated profiled elements toward one of the sides. A second separating device disposed adjacent the first end between the portion of the separated profiled elements and the remainder of the profiled elements travels from the first end toward the second end for separating the separated profiled elements from the remainder of the profiled elements, directing the separated profiled element to one side of the structure.
Abstract:
An apparatus for picking, conveying, stacking and bundling lumber pieces from the ground for example for removing stacked support lumber during laying of a pipe line comprises a tracked vehicle to which is attached a frame carrying a transport conveyer along the side of the vehicle forwardly and downwardly toward the ground. At the forward picking end is provided a picker roller for lifting the lumber pieces from the ground. On one side of the picker roller is provided a drive conveyer which is generally vertical and operable in forward and reverse direction to orient the pieces. On the side opposite to the drive conveyers provided a vertical blade with a rearwardly inclined inner portion which blade can pivot inwardly to push the lumber pieces toward the drive conveyer and to enclose and squeeze the pieces to a position inward of the side of the conveyer. Behind the vehicle is mounted a stacking section which arranges the pieces in a row and then stacks part of the row on top of another part to form the stack. The stack passes through a frame which clamps the pieces together to squeeze the stack and also to wrap the stack with a strapping carried into place by a chain.
Abstract:
A high-speed stacker preferably includes dual stacking arms configured to operate complementary to one another. Most preferably, an electronic control system is provided to enable precise control over the speed and positioning of the stacker arms in both horizontal and vertical orientations. Linear motion devices (such as hydraulic cylinders, screw drive linear actuators, or other devices) can be used to position the arms horizontally and vertically in response to instructions from the electronic control system. In operation, the electronic control system preferably controls the speed and ramping of the stacker arms to repeatedly move courses of material from a feed system to a stacking area at a rapid rate with little maintenance. The high-speed stacker can also be configured to operate fewer than all of the stacker arms to facilitate faster stacking of smaller courses of material.