Abstract:
An electrically powered caliper is provided which includes a scale member, a slider, a displacement sensor, a force sensing arrangement and a signal processing portion. The signal processing portion is configured to receive a force signal and indicate a respective force corresponding to the respective position of the slider. Force data is acquired comprising a plurality of respective forces corresponding to respective positions of the slider. The signal processing portion defines an acceptable measurement force range defined by at least a minimum force threshold that is determined such that it exceeds a compensation force corresponding to at least one force component included in the force signal that is independent of user variations of the measurement force. It may analyze acquired force data to identify pre-contact data, and set the minimum force threshold for a current measurement procedure based on that pre-contact data.
Abstract:
Systems and methods for perturbation analysis of harmonic oscillations in the time domain according to several embodiments can include a time domain switching sensor and a resonator for imposing a first oscillation and a second oscillation on the sensor. The first and second oscillations can have the same amplitude A and period P, but can have a known phase shift. The sensor can use a time interval, which can be defined by the time between when the sensor passes a reference point due to motion caused by the first oscillation and when the sensor passes the same reference point, but due to motion caused by the second oscillation. With this configuration an improved accuracy of measurement for the system can be realized.
Abstract:
Disclosed is an electrical-mechanical complex sensor for nanomaterials, including: a detector having a piezoelectric film therein, for measuring a mechanical property of a nanomaterial when a bending or tensile load is applied to the nanomaterial; a first detection film formed at an end of the detector to measure the mechanical property and an electrical property of the nanomaterial) in real time at the same time, when the nanomaterial contacts the first detection film; and a support to which one end of the detector is integrally connected, for supporting the detector.
Abstract:
The invention relates to a spring (1), in particular for a push button, for fixing to a carrier (2) and for registering a vertical force (F). The spring (3) is designed in such a way that when actuated it converts a vertical movement into a horizontal movement that can be detected by sensor means (4).
Abstract:
A detection circuit for detecting changes in capacitance. The detection circuit includes a tuned ratio circuit and an alternating current (AC) source AC-coupled to the tuned ratio circuit. The tuned ratio circuit includes first and second tuned circuits that are tuned to, or close, to the frequency of the AC source. Output circuitry is coupled between the two tuned circuits. During use as a transducer, an active capacitive transducer is inductively coupled to the first tuned circuit. Changes in the capacitance of the active capacitive transducer cause changes in the tuning of the first tuned circuit. The output circuitry generates an output signal that is a function of the difference between the tunings of the first and second tuned circuits.
Abstract:
Force plate (1) having a plate-shaped carrier (2) which, when arranged vertically, has an upper carrier section (3) at the top in the vertical direction and a lower carrier section (4) at the bottom in the vertical direction. A first end carrier section (5) is connected, on the one hand, to the upper carrier section (3) via a vertical rod (7) and, on the other hand, to the lower carrier section (4) via a horizontally oriented spring element (6). That end of the lower carrier section (4) which faces away from the first end carrier section (5) is connected to the upper carrier section (3) via a horizontal rod (8). A second end carrier section (15) connects the horizontal rod (8) to the lower carrier section (4) via a vertically arranged spring element (16).
Abstract:
A microfluidic embedded nanoelectromechanical system (NEMs) force sensor provides an electrical readout. The force sensor contains a deformable member that is integrated with a strain sensor. The strain sensor converts a deformation of the deformable member into an electrical signal. A microfluidic channel encapsulates the force sensor, controls a fluidic environment around the force sensor, and improves the read out. In addition, a microfluidic embedded vacuum insulated biocalorimeter is provided. A calorimeter chamber contains a parylene membrane. Both sides of the chamber are under vacuum during measurement of a sample. A microfluidic cannel (built from parylene) is used to deliver a sample to the chamber. A thermopile, used as a thermometer is located between two layers of parylene.
Abstract:
A piezo-TFT cantilever microelectromechanical system (MEMS) and associated fabrication processes are provided. The method comprises: providing a substrate, such as glass for example; forming thin-films overlying the substrate; forming a thin-film cantilever beam; and simultaneously forming a TFT within the cantilever beam. The TFT is can be formed least partially overlying a cantilever beam top surface, at least partially overlying a cantilever beam bottom surface, or embedded within the cantilever beam. In one example, forming thin-films on the substrate includes: selectively forming a first layer with a first stress level; selectively forming a first active Si region overlying the first layer; and selectively forming a second layer overlying the first layer with a second stress level. The thin-film cantilever beam is formed from the first and second layers, while the TFT source/drain (S/D) and channel regions are formed from the first active Si region.
Abstract:
A microfluidic embedded nanoelectromechanical system (NEMs) force sensor provides an electrical readout. The force sensor contains a deformable member that is integrated with a strain sensor. The strain sensor converts a deformation of the deformable member into an electrical signal. A microfluidic channel encapsulates the force sensor, controls a fluidic environment around the force sensor, and improves the read out. In addition, a microfluidic embedded vacuum insulated biocalorimeter is provided. A calorimeter chamber contains a parylene membrane. Both sides of the chamber are under vacuum during measurement of a sample. A microfluidic cannel (built from parylene) is used to deliver a sample to the chamber. A thermopile, used as a thermometer is located between two layers of parylene.
Abstract:
A sensing device includes a nanowire configured to deform upon exposure to a force, and a transducer for converting the deformation into a measurement. The nanowire has two opposed ends; and the transducer is operatively connected to one of the two opposed ends of the nanowire. The other of the two opposed ends of the nanowire is freestanding.