Method for manufacturing P-I-N microcrystalline silicon structure for thin-film solar cells
    1.
    发明授权
    Method for manufacturing P-I-N microcrystalline silicon structure for thin-film solar cells 有权
    薄膜太阳能电池用P-I-N微晶硅结构的制造方法

    公开(公告)号:US08557041B1

    公开(公告)日:2013-10-15

    申请号:US13549049

    申请日:2012-07-13

    摘要: A method for manufacturing a P-I-N microcrystalline silicon structure for thin-film solar cells, includes the steps of: (a) forming a P-type layer; (b) forming an I-type layer including a plurality of sub-layers successively stacked on the P-type layer using gas mixtures including fluoride and hydride that have different gas ratios, respectively; and (c) forming an N-type layer on the I-type layer. First, second, and third I-type sub-layers may be formed on the P-type layer using gas mixtures including fluoride and hydride at a first, second, and third gas ratios, respectively. Then, advantageously, the third gas ratio may be larger than the second gas ratio and the second gas ratio may be larger than the first gas ratio, and the first gas ratio may be 8%, the second gas ratio may range between 15% and 35%, and the third gas ratio may range between 35% and 50%.

    摘要翻译: 一种薄膜太阳能电池用P-I-N微晶硅结构体的制造方法,包括以下步骤:(a)形成P型层; (b)使用分别具有不同气体比的氟化物和氢化物的气体混合物,分别形成包括依次层叠在P型层上的多个子层的I型层; 和(c)在I型层上形成N型层。 可以分别在第一,第二和第三气体比例下使用包括氟化物和氢化物的气体混合物在P型层上形成第一,第二和第三I型亚层。 那么有利地,第三气体比可以大于第二气体比,第二气体比可以大于第一气体比,第一气体比可以是8%,第二气体比可以在15%和 35%,第三气体比可以在35%至50%之间。

    Chemical polishing of single crystal dielectrics
    3.
    发明授权
    Chemical polishing of single crystal dielectrics 失效
    单晶电介质的化学抛光

    公开(公告)号:US3964942A

    公开(公告)日:1976-06-22

    申请号:US81610

    申请日:1970-10-16

    CPC分类号: H01L21/00 C30B29/00 H01L27/00

    摘要: A polishing method for single crystal dielectrics such as sapphire and magnesium spinel is disclosed. A single crystal wafer of sapphire or magnesium spinel is immersed in a mixture of sulphuric and phosphoric acid in a range of mixtures of 9 parts sulphuric acid to 1 part phosphoric acid to 1 part sulphuric acid to 9 parts phosphoric acid by volume while the mixture is held at a temperature in the range of 200.degree.-325.degree.C. The rate of polishing as well as the quality of polishing of the wafers of sapphire or magnesium spinel is orientation sensitive and polishing is achieved for magnesium spinel having the orientations (100) and (110). Polishing is achieved for sapphire having the orientations (0001), (1123), (1100), (1124), (1120) and (0112). A wafer to be polished is suspended in the heated solution and may be rotated slowly. Nonpreferential material removal rates of fractions of a micron per minute are obtained. Crystals of both sapphire and spinel having the above-mentioned orientations may be polished in a preferred temperature range of 250.degree.-300.degree.C. The preferred polishing mixture for sapphire is 1 part sulphuric acid to 1 part phosphoric acid by volume at a temperature of 285.degree.C. For magnesium spinel, the preferred mixture is 3 parts sulphuric acid to 1 part phosphoric acid at a temperature of 250.degree.C. The polishing technique of the present invention provides planar, polished surfaces which are free of insoluble residues on the polished surface.

    摘要翻译: 公开了诸如蓝宝石和镁尖晶石之类的单晶电介质的抛光方法。 将蓝宝石或镁尖晶石的单晶晶片浸入硫酸和磷酸的混合物中,所述混合物在9份硫酸至1份磷酸与1份硫酸至9份磷酸溶液的混合物的范围内,同时混合物为 保持在200〜-325℃的范围内。抛光速度以及蓝宝石或镁尖晶石晶片的抛光质量是取向敏感的,并且对具有取向(100)的镁尖晶石实现抛光, 和(110)。 对于具有取向(0001),(1123),(1100),(1124),(1120)和(0112)的蓝宝石,实现抛光。 要抛光的晶片悬挂在加热的溶液中并且可以缓慢旋转。 获得每分钟微米分数的非优选材料去除速率。 具有上述取向的蓝宝石和尖晶石的晶体可以在250-300℃的优选温度范围内抛光。对于蓝宝石,优选的抛光混合物是1体积的硫酸至1份磷酸,体积温度为 对于镁尖晶石,优选的混合物是在250℃的温度下为3份硫酸至1份磷酸。本发明的抛光技术提供平面抛光表面,其在抛光后不含不溶残留物 表面。

    Method for controlling the diameter of a single crystal to a set point diameter
    7.
    发明授权
    Method for controlling the diameter of a single crystal to a set point diameter 有权
    用于将单晶体的直径控制到设定点直径的方法

    公开(公告)号:US09340897B2

    公开(公告)日:2016-05-17

    申请号:US14285752

    申请日:2014-05-23

    申请人: SILTRONIC AG

    发明人: Thomas Schroeck

    摘要: The diameter of a single crystal is controlled to a set point diameter during pulling of the single crystal from a melt contained in a crucible and which forms a meniscus at a phase boundary on the edge of the single crystal, the meniscus having a height which corresponds to the distance between the phase boundary and a level of the surface of the melt outside the meniscus, comprising repeatedly: determining the diameter of a bright ring on the meniscus; calculating a diameter of the single crystal while taking into account the diameter of the bright ring and the dependency of the diameter of the bright ring on the height of the meniscus and on the diameter of the single crystal itself; and calculating at least one manipulated variable for controlling the diameter of the single crystal on the basis of the difference between the calculated diameter of the single crystal and the set point diameter of the single crystal.

    摘要翻译: 在单晶体从包含在坩埚中的熔体中拉出单晶并且在单晶边缘处的相边界处形成弯液面时,单晶的直径被控制到设定点直径,弯液面的高度对应于 相对于弯液面以外的相边界和熔体表面的水平之间的距离,包括重复:确定弯月面上的亮环的直径; 计算单晶的直径,同时考虑到亮环的直径和亮环的直径对弯液面的高度和单晶本身的直径的依赖性; 并且基于计算的单晶体的直径和单晶的设定点直径之间的差来计算用于控制单晶直径的至少一个操作变量。