摘要:
A method for manufacturing a P-I-N microcrystalline silicon structure for thin-film solar cells, includes the steps of: (a) forming a P-type layer; (b) forming an I-type layer including a plurality of sub-layers successively stacked on the P-type layer using gas mixtures including fluoride and hydride that have different gas ratios, respectively; and (c) forming an N-type layer on the I-type layer. First, second, and third I-type sub-layers may be formed on the P-type layer using gas mixtures including fluoride and hydride at a first, second, and third gas ratios, respectively. Then, advantageously, the third gas ratio may be larger than the second gas ratio and the second gas ratio may be larger than the first gas ratio, and the first gas ratio may be 8%, the second gas ratio may range between 15% and 35%, and the third gas ratio may range between 35% and 50%.
摘要:
High throughput screening of crystallization of a target material is accomplished by simultaneously introducing a solution of the target material into a plurality of chambers of a microfabricated fluidic device. The microfabricated fluidic device is then manipulated to vary the solution condition in the chambers, thereby simultaneously providing a large number of crystallization environments. Control over changed solution conditions may result from a variety of techniques, including but not limited to metering volumes of crystallizing agent into the chamber by volume exclusion, by entrapment of volumes of crystallizing agent determined by the dimensions of the microfabricated structure, or by cross-channel injection of sample and crystallizing agent into an array of junctions defined by intersecting orthogonal flow channels.
摘要:
A polishing method for single crystal dielectrics such as sapphire and magnesium spinel is disclosed. A single crystal wafer of sapphire or magnesium spinel is immersed in a mixture of sulphuric and phosphoric acid in a range of mixtures of 9 parts sulphuric acid to 1 part phosphoric acid to 1 part sulphuric acid to 9 parts phosphoric acid by volume while the mixture is held at a temperature in the range of 200.degree.-325.degree.C. The rate of polishing as well as the quality of polishing of the wafers of sapphire or magnesium spinel is orientation sensitive and polishing is achieved for magnesium spinel having the orientations (100) and (110). Polishing is achieved for sapphire having the orientations (0001), (1123), (1100), (1124), (1120) and (0112). A wafer to be polished is suspended in the heated solution and may be rotated slowly. Nonpreferential material removal rates of fractions of a micron per minute are obtained. Crystals of both sapphire and spinel having the above-mentioned orientations may be polished in a preferred temperature range of 250.degree.-300.degree.C. The preferred polishing mixture for sapphire is 1 part sulphuric acid to 1 part phosphoric acid by volume at a temperature of 285.degree.C. For magnesium spinel, the preferred mixture is 3 parts sulphuric acid to 1 part phosphoric acid at a temperature of 250.degree.C. The polishing technique of the present invention provides planar, polished surfaces which are free of insoluble residues on the polished surface.
摘要:
ULTRA-PURE GERMANIUM IS PREPARED FREE OF ACCEPTOR IMPURITIES BY MELTING ZONE REFINED, OR COMPARABLE PURITY, GERMANIUM INA QUARTZ CRUCIBLE AND GROWING SINGLE CRYSTALS FROM THE MELT BY SEED CRYSTAL WITHDRAWAL INGOT GROWTH. THE PROCESS IS REPEATED UNTIL THE DESIRED PURITY IS OBTAINED. PRIOR TO RE-USE OF PREVIOUSLY USED CRUCIBLES, CRUCIBLES ARE ETCHED TO REMOVE ACCEPTOR-QUARTZ REACTION PRODUCT FROM THE SURFACE THEREOF.
摘要:
A silicon carbide single crystal substrate includes a first main surface and an orientation flat. The orientation flat extends in a direction. The first main surface includes an end region extending by at most 5 mm from an outer periphery of the first main surface. In a direction perpendicular to the first main surface, an amount of warpage of the end region continuous to the orientation flat is not greater than 3 μm.
摘要:
The diameter of a single crystal is controlled to a set point diameter during pulling of the single crystal from a melt contained in a crucible and which forms a meniscus at a phase boundary on the edge of the single crystal, the meniscus having a height which corresponds to the distance between the phase boundary and a level of the surface of the melt outside the meniscus, comprising repeatedly: determining the diameter of a bright ring on the meniscus; calculating a diameter of the single crystal while taking into account the diameter of the bright ring and the dependency of the diameter of the bright ring on the height of the meniscus and on the diameter of the single crystal itself; and calculating at least one manipulated variable for controlling the diameter of the single crystal on the basis of the difference between the calculated diameter of the single crystal and the set point diameter of the single crystal.
摘要:
High throughput screening of crystallization of a target material is accomplished by simultaneously introducing a solution of the target material into a plurality of chambers of a microfabricated fluidic device. The microfabricated fluidic device is then manipulated to vary the solution condition in the chambers, thereby simultaneously providing a large number of crystallization environments. Control over changed solution conditions may result from a variety of techniques, including but not limited to metering volumes of crystallizing agent into the chamber by volume exclusion, by entrapment of volumes of crystallizing agent determined by the dimensions of the microfabricated structure, or by cross-channel injection of sample and crystallizing agent into an array of junctions defined by intersecting orthogonal flow channels.
摘要:
Laser processing of various materials to create mechanical devices whose internal mechanical properties are provided in final useable form by adjustments made in internal crystalline structure.