Abstract:
An aluminum alloy brazing sheet including: a core material made of an aluminum alloy; and a cladding material clad on at least one side of the core material and made of an aluminum alloy having a potential lower than that of the core material. The cladding material is an outermost layer of the brazing sheet, wherein the cladding material is made of an aluminum alloy including 0.2 to 2.0 wt % of Mg, 0.5 to 1.5 wt % of Si, 1.0 to 2.0 wt %, preferably 1.4-1.8% of Mn, ≦0.7 wt % of Fe, ≦0.1 wt % of Cu, and ≦4 wt % of Zn, ≦0.3 wt % each of Zr, Ti, Ni, Hf, V, Cr, In, Sn and ≦0.5 wt % total of Zr, Ti, Ni, Hf, V, Cr, In, Sn, the remainder being Al and unavoidable impurities.
Abstract:
The present invention relates to an aluminum alloy for die-casting. More particularly, the present invention relates to an aluminum alloy being usable for die-casting and including 1.0% to 5.0% by weight of Mn, 0.5% to 1.5% by weight of Zn, 1.0% to 2.0% by weight of Zr, 0.5% to 1.5% by weight of Cu and 85% to 97% by weight of aluminum. Surface smut due from silicon smutting is not caused after a molding process so that a product can have a clear color, Furthermore, the aluminum alloy can increase an adhesion strength of a coating layer thereby increasing a durability of a die-casting product. Furthermore, because the aluminum alloy does not include a heavy metal harmful to human being, the aluminum alloy may be non-toxic and environment-friendly.
Abstract:
An aluminum alloy wrought product including, in wt. %, Mg 3.0 to 7.0, Zn 0.6 to 2.8, Mn 0 to 1.0, Cu 0 to 2.0, Sc 0 to 0.6, at least one element selected from the group of Zr 0.04 to 0.4, Cr 0.04 to 0.4, Hf 0.04 to 0.4 and Ti 0.01 to 0.3; Fe maximum 0.3, Si maximum 0.3, inevitable impurities, and balance aluminum. The range for the Zn-content in wt. % is a function of the Mg-content according to: lower-limit of the Zn-range: [Zn]=0.34[Mg]−0.4, and upper-limit of the Zn-range: [Zn]=0.34[Mg]+0.4.
Abstract:
An Al—Zn—Mg—Cu-based high-strength aluminum alloy thin extruded shape has a yield strength of 700 MPa or more. The high-strength aluminum alloy thin extruded shape includes 9.0 to 13.0 mass % of Zn, 2.0 to 3.0 mass % of Mg, 1.0 to 2.0 mass % of Cu, and 0.05 to 0.3 mass % of Zr, with the balance being Al and unavoidable impurities, fine precipitates having a circle equivalent diameter of 5 to 20 nm being dispersed in a crystal grain of the extruded shape in a number of 4000 to 6000 per μm2.
Abstract:
An aluminum alloy material contains Si: 1.0 mass % to 5.0 mass % and Fe: 0.01 mass % to 2.0 mass % with balance being Al and inevitable impurities, wherein 250 pcs/mm2 or more to 7×105 pcs/mm2 or less of Si-based intermetallic compound particles having equivalent circle diameters of 0.5 to 5 μm are present in a cross-section of the aluminum alloy material, while 100 pcs/mm2 to 7×105 pcs/mm2 of Al-based intermetallic compound particles having equivalent circle diameters of 0.5 to 5 μm are present in a cross-section of the aluminum alloy material. An aluminum alloy structure is manufactured by bonding two or more members in vacuum or a non-oxidizing atmosphere at temperature at which a ratio of a mass of a liquid phase generated in the aluminum alloy material to a total mass of the aluminum alloy material is 5% or more and 35% or less.
Abstract translation:铝合金材料含有Si:1.0质量%至5.0质量%,Fe:0.01质量%至2.0质量%,余量为Al和不可避免的杂质,其中250个/ mm 2以上至7×105个/ mm 2以下的Si 在铝合金材料的截面中存在等效圆直径为0.5〜5μm的金属间化合物颗粒,而具有当量圆直径的100个/ mm 2至7×105个/ mm 2的Al基金属间化合物颗粒 在铝合金材料的横截面中存在0.5-5μm。 在铝合金材料中产生的液相的质量比与铝合金材料的总质量的比率为5的温度下,在真空或非氧化性气氛中接合两个以上的构件,制造铝合金结构体 %以上35%以下。
Abstract:
New 7xxx aluminum alloy bodies and methods of producing the same are disclosed. The new 7xxx aluminum alloy bodies may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new 7xxx aluminum alloy bodies may realize improved strength and other properties.
Abstract:
A wear-resistant alloy having a complex microstructure is provided. from the microstructure includes a range of about 19 to about 27 wt % of zinc (Zn), a range of about 3 to about 5 wt % of tin (Sn), a range of about 7.6 to about 11 wt % of silicon (Si), and a balance of aluminum (Al).
Abstract:
Disclosed is high thermal conductivity Al—Si—Fe—Zn alloy for die casting which comprises 1.0 weight % to 2.0 weight % of silicon (Si), 0.5 weight % to 1.6 weight % of iron (Fe), 0.6 weight % to 1.6 weight % of zinc (Zn), with the remainder being aluminum (Al) and inevitable impurities.
Abstract:
Aluminum alloy products about 4 inches thick or less that possesses the ability to achieve, when solution heat treated, quenched, and artificially aged, and in parts made from the products, an improved combination of strength, fracture toughness and corrosion resistance, the alloy consisting essentially of: about 6.8 to about 8.5 wt. % Zn, about 1.5 to about 2.00 wt. % Mg, about 1.75 to about 2.3 wt. % Cu; about 0.05 to about 0.3 wt. % Zr, less than about 0.1 wt. % Mn, less than about 0.05 wt. % Cr, the balance Al, incidental elements and impurities and a method for making same. The invention alloy is useful in making structural members for commercial airplanes including, but not limited to, upper wing skins and stringers, spar caps, spar webs and ribs of either built-up or integral construction. The invention alloy may be aged by 2 or 3 step practices while exceeding the SCC requirements for applications for which the invention alloy is primarily intended. The flexibility of the invention in this regard is useful for its application in multi-alloy or multi-material systems joined by welding or bonding and subsequently aged.