Abstract:
A movable contact of a rotary switch, including a pair of contact blades for making an electrical contact to a stationary contact receivable between the contact blades. The movable contact includes a traction member for providing a traction force between the contact blades, wherein the traction member is a unitary piece including two frame portions for framing the pair of contact blades, the traction member including a spring portion for pressing one of the contact blades against the other contact blade, wherein the spring portion is arranged between the two frame portions arranged at a distance from each other.
Abstract:
The disclosure relates to a gas permeable wall for preventing dirt present in a gas flow from passing through the gas permeable wall with the gas flow. In order to minimize maintenance, the gas permeable wall is a circumferential wall of a cover, and an outlet from the cover is provided for passing on gas having entered the cover through the circumferential gas permeable wall. A support is provided for attaching the cover rotatably to a device, and a drive unit is provided for rotating the cover.
Abstract:
An exemplary device and method for estimating an active and/or reactive component of output power of a three-level inverter having a DC link divided into two halves by a neutral point. The device having control unit for determining a voltage ripple at the neutral point, determining a magnitude of a third harmonic component of the voltage ripple in a rotating coordinate system that rotates synchronously with an output voltage of the inverter, and calculating a component of an output current or power in the rotating coordinate system on the basis of the magnitude of the third harmonic component.
Abstract:
A method and arrangement for preventing slip in a wheeled vehicle having two or more driving wheels that are operated with electric motors. The motor of each driving wheel includes a torque limit applicable to limit torque of the motor. For each driving wheel, the method includes setting an angular acceleration limit for the wheel, detecting angular acceleration of the driving wheel continuously, comparing the detected angular acceleration with the angular acceleration limit continuously, if the detected angular acceleration is higher than the angular acceleration limit, reducing the torque limit from its current value until the angular acceleration of the wheel is below the angular acceleration limit, increasing the torque limit at a first rate to a value lower than the value from which it was reduced, and increasing the torque limit at a second rate to the maximum value, the second rate being lower than the first rate.
Abstract:
A cooling element includes a first surface for receiving an electric component, and a second surface which is provided with fins for forwarding a heat load received from the electric component via the first surface to surroundings. One or more of the fins are provided with a respective flow channel for passing a fluid within each respective fin, to provide efficient cooling.
Abstract:
An electronic device including a sealed enclosure, the electronic components arranged inside the sealed enclosure and including high-loss high-temperature components, a main heat sink including ribs, wherein the high-loss high-temperature components are attached to the main heat sink and the ribs of the main heat sink are arranged outside the enclosure, a cavity formed inside the enclosure and divided into a plurality of channel-like sections, the channel-like sections configured for providing air flow guidance inside the enclosure and being interconnected at their ends, wherein at least one channel-like section contains the electronic components and at least one other channel-like section contains an air-to-air heat exchanger extending from inside the sealed enclosure to outside of the sealed enclosure, wherein the electronic components inside the at least one channel like section are adapted to be cooled by air flow inside the sealed enclosure.
Abstract:
An arrangement and a method are provided in connection with a solar energy system. The arrangement includes solar panels and a converter for converting the DC voltage from the solar panels. The converter is arranged inside a container or a similar closed structure. The arrangement includes means for producing heat from the energy produced by the solar panels. The means are arranged inside the container or a similar closed structure and are electrically connectable to the solar panels.
Abstract:
A method is provided for balancing voltages of a DC link of a multi-level inverter, where the DC link is divided into two halves by a neutral point connection. The method includes injecting a periodic common-mode voltage injection signal to a common-mode voltage reference and a periodic power injection signal to a power reference of the inverter. The power injection signal has the same frequency as the common-mode voltage injection signal. A phase shift between the common-mode voltage injection signal and the power injection signal is constant. The amplitude of at least one of the common-mode voltage injection signal and the power injection signal is controlled on the basis of a difference between voltages over the two halves of the DC link. An apparatus is also provided for implementing the method.
Abstract:
An electric switch is disclosed which includes a housing module housing a movable contact and a stationary contact having a contact portion to be contacted by the movable contact . The stationary contact can include a mounting portion, which mounting portion can be positioned closer to the centre of the housing module than the contact portion of the stationary contact.
Abstract:
The present disclosure relates to a ship's propulsion unit which includes: a closed liquid cooling system having an inner space containing liquid. The inner space is partly limited by a cylindrical outer surface of a cylindrical section of a motor housing section of the propulsion unit for exchanging thermal energy between an electric motor arranged in the cylindrical section of the motor housing section and liquid in the inner space. The inner space of the closed liquid cooling system is partly limited by the shell structure of the propulsion unit so that liquid in the inner space is in direct contact with the shell structure of the propulsion unit for exchanging thermal energy between liquid in the inner space and water surrounding the propulsion unit via the shell structure of the propulsion unit.