Abstract:
A method and apparatus are disclosed from the perspective of a User Equipment (UE). In one embodiment, the method includes receiving, from a network node, a configuration of Preconfigured Uplink Resources (PUR), when the UE is in RRC_CONNECTED state, wherein the PUR is used for a transmission when the UE is in RRC_IDLE state. The method also includes determining to generate a first Radio Resource Control (RRC) message or a second RRC message for the transmission based on whether the transmission is to be transmitted using the PUR or not, wherein the first RRC message includes a UE identity and the second RRC message does not include the UE identity. The method further includes performing the transmission including the first RRC message or the second RRC message when the UE is in RRC_IDLE state.
Abstract:
A method and apparatus are disclosed for assisting data transmission in a wireless communication system. In one embodiment, the method includes a UE transmitting information to a base station, wherein the information at least indicates time to start an uplink transmission by the UE. In another embodiment, the method could include the UE receiving, from the base station, a configuration indicating a periodic uplink resource allocation. In addition, the method could include the UE performing the uplink transmission based on the periodic uplink resource allocation.
Abstract:
Methods and apparatuses for handling a SCell deactivation timer in a wireless communication system are disclosed herein. In one method, a network node configures a UE with a first SCell. The network node configures the UE to use a first SCell deactivation timer for the first SCell. The network node configures the UE with a SPS resource on the first SCell. The network node configures the UE not to use the first SCell deactivation timer if a length of the first SCell deactivation timer is shorter than a SPS interval of the SPS resource.
Abstract:
A method and apparatus for delivery of control signaling in a wireless communication system are disclosed. In one embodiment, the method includes communicating with a UE (User Equipment) in the cell via downlink and uplink transmissions, wherein the downlink and uplink transmissions are organized into radio frames and each radio frame contains multiple subframes and each subframe contains multiple symbols. The method also includes transmitting, in the cell, a UE specific signal in a first symbol of a downlink control region of a subframe of the multiple subframes, wherein the network node is not allowed to transmit a common signal in the first symbol.
Abstract:
Methods and apparatuses for triggering a power headroom report for beam operation in a wireless communication system are disclosed herein. In one method, a user equipment (UE) uses multiple beams for transmission. The UEtriggers a power headroom report due to a change of a pathloss being larger than a threshold, wherein the pathloss is associated with a specific beam or a set of beams.
Abstract:
Methods and apparatuses for user equipment beamforming operation in a wireless communication system. In one method, a user equipment receives a first configuration or a first scheduling to request the UE to perform a first Uplink (UL) transmission on a first UE beam, wherein the first UL transmission is to be performed in a first time unit. The UE receives a second configuration or a second scheduling to request the UE to perform a second UL transmission on a second UE beam, wherein the second UL transmission is to be performed in a second time unit. The UE performs the first UL transmission on the first UE beam and drops the second UL transmission on the second UE beam if the second time unit is at least partially overlapped with the first time unit.
Abstract:
A method and apparatus are disclosed from the perspective of a UE. In one embodiment, the method includes maintaining a first timing advance for a cell, wherein the first timing advance is associated with a first identifier. The method further includes performing a random access procedure in the cell. The method also includes receiving an initial value of a second timing advance for the cell via a random access response of the random access procedure. In addition, the method includes receiving a second identifier to associate with the second timing advance. Furthermore, the method includes maintaining the first timing advance and the second timing advance for the cell.
Abstract:
A method and apparatus are disclosed, from the perspective of the UE (User Equipment). In one embodiment, the method includes maintaining a first timing advance value for uplink transmissions. In addition, the method includes receiving a signaling, via a downlink control channel, to schedule a first uplink transmission in a cell, wherein the signaling includes a first information to assist the UE to determine a specific timing advance value for the first uplink transmission, and the first information indicates an index value used to control an amount of timing adjustment to be applied. The method also includes performing the first uplink transmission in the cell at transmission timing determined at least based on the specific timing advance value.
Abstract:
A method for a wireless communications system is disclosed. In one example, a user equipment (UE) device (e.g. a mobile phone) provides a UE beam sweeping number to a network node. Based on the UE beam sweeping number, the network node provides configuration information or allocates a resource to the UE device. The UE device can use the configuration information or the resource for measurement. The beam sweeping number refers to the number of time intervals that the UE device would need to generate multiple sets of UE beams, one set per time interval, that would cover all possible directions in which the UE device sends and/or receives transmissions, in a manner that resembles a sweeping of UE beams.
Abstract:
A method and apparatus for implementing reference signal transmissions in a wireless communication system. In one embodiment, the method includes the cell, transmission point (TP), or transmission and reception point (TRP) broadcasting a first RS periodically for measurement, wherein the first RS is transmitted at multiple occasions (or timings) in each period on different beams. The method also includes the cell, TP, or TRP transmitting a second RS to a UE for PDCCH demodulation, wherein the second RS is transmitted on multiple beams in a beam set of the UE in a subframe (or symbol) in which the PDCCH is transmitted.