Abstract:
Systems and methods that enhance radio link performance in a multi-carrier environment. A method may be performed by a UE that includes scanning a plurality of carrier components for a primary cell, determining a first bandwidth of the primary cell, scanning for a secondary cell, determining a second bandwidth of the secondary cell, determining a maximum aggregated bandwidth by combining the first bandwidth and the second bandwidth and when the maximum aggregated bandwidth exceeds a bandwidth capability of the UE, performing a cell selection procedure to select one of the primary cell or the secondary cell based on a higher of the first bandwidth and the second bandwidth.
Abstract:
Methods and apparatus for reducing power consumption in a wireless device operating in a discontinuous transmission (DTX) mode while using a voice over Long Term Evolution (VoLTE) service. The wireless device detects a period of voice inactivity and transmits one or more silence descriptor (SID_UPDATE) frames to a second wireless device in place of encoded speech frames. The SID_UPDATE frames are transmitted periodically based on measurements of comfort noise parameters. The wireless device determines a difference between weighted averages of comfort noise (CN) parameters of two sequences of encoded speech frames. When the difference exceeds a difference threshold, a SID_UPDATE frame is transmitted. Additionally, in some embodiments, a SID_UPDATE frame is transmitted when the weighted average of CN parameters exceeds a parameter threshold and/or when a time between SID_UPDATE frames or time elapsed after entering a silence state exceeds one or more time thresholds.
Abstract:
This disclosure relates to network infrastructure identification by a wireless user equipment (UE) device. According to one embodiment, one or more requests for infrastructure identification information may be transmitted. Each request may indicate a current location of the UE. A respective response may be received to each corresponding respective request. Each respective response may include infrastructure identification information for the current location indicated in the corresponding respective request. Features such as vendor, type, model, or version of cellular network infrastructure equipment with which the UE performs cellular communication may be identified based on the response(s), and features specific to the identified equipment may accordingly be implemented during such cellular communication.
Abstract:
User Equipment (UE) based forced inter radio access technology (iRAT) handover. A connection to a network may be established via a first cell operating according to a first radio access technology (RAT). It may be determined to initiate a handover of the UE from the first cell to a second cell operating according to a second RAT. An indication may be transmitted to the network to initiate a handover of the UE from the first cell to the second cell. An indication may be received from the network to perform handover of the UE from the first cell to the second cell in response to the indication to initiate the handover. Handover of the UE from the first cell to the second cell may be performed in response to the indication to perform the handover. Handover may include releasing the connection to the network via the first cell and establishing a connection to the network via the second cell.
Abstract:
A method for providing indication of an SRVCC handover is disclosed. The method can include a first wireless communication device participating in a voice call with a second wireless communication device via a connection between the first wireless communication device and a first network. The method can further include the first wireless communication device determining a condition indicative of an impending SRVCC handover of the first wireless communication device from the first network to a legacy network. In response to the condition, the method can additionally include the first wireless communication device formatting a message including an indication that the first wireless communication device is going to perform the SRVCC handover and sending the message to the second wireless communication device prior to performance of the SRVCC handover.
Abstract:
User Equipment (UE) based forced inter radio access technology (iRAT) handover. A connection to a network may be established via a first cell operating according to a first radio access technology (RAT). It may be determined to initiate a handover of the UE from the first cell to a second cell operating according to a second RAT. An indication may be transmitted to the network to initiate a handover of the UE from the first cell to the second cell. An indication may be received from the network to perform handover of the UE from the first cell to the second cell in response to the indication to initiate the handover. Handover of the UE from the first cell to the second cell may be performed in response to the indication to perform the handover. Handover may include releasing the connection to the network via the first cell and establishing a connection to the network via the second cell.
Abstract:
A method for reducing packet loss during data transfer from a network to a wireless communication device over a connection is disclosed. The method can include the wireless communication device signaling a first receive window size for a data transfer; determining occurrence of an event resulting in an interruption of the connection; and, in response to determining occurrence of the event, signaling a second receive window size for the data transfer prior to the event to trigger an adjustment of a data rate of the data transfer in preparation for the event.
Abstract:
A method for handling a missed rank report during a tune-away period is provided. The method can include a wireless communication device tuning away from a first network to a second network for a tune-away period; returning to the first network from the tune-away period; determining that a scheduled rank report was missed during the tune-away period; generating a Channel State Indicator (CSI) report based on a previously defined Rank Indicator (RI) value known to the first network in response to missing the scheduled rank report; and sending the CSI report to the first network.
Abstract:
Methods and apparatus for intelligent scheduling in hybrid networks based on client identity. For example, in one embodiment, the hybrid networks are cellular networks (e.g., LTE and CDMA 1X), and a cellular device uses a single-radio solution to support circuit-switched calls on a CDMA 1X network and packet-switched calls on LTE. Periodically, the cellular device tunes away from LTE and monitors CDMA 1X activity, and vice versa. The LTE network can infer the cellular device's tune away schedule, based on the device's identity, and the paging schedule algorithm of the CDMA 1X network.