Abstract:
A CMTS may receive a request that a network device be permitted to enter a power-saving mode of operation. In response, the CMTS may enter a power-saving mode of operation wherein MAC management messages, transmission opportunities for the sleeping network device, and/or contention periods on one or more channels occur at independently determinable intervals. The CMTS may then transmit a message granting the network device permission to enter the power-saving mode of operation. The CMTS may start a sleep timer upon transmitting the MAC management message and may deregister the network device if no communication is received from the network device prior to expiration of the sleep timer. The CMTs may buffer traffic destined for the network device in a buffer of the CMTS while the network device is in the power-saving mode of operation, and may wake the network device upon the amount of buffered traffic reaching a threshold.
Abstract:
Receiver architectures and methods of processing harmonic rich input signals employing harmonic suppression mixers are disclosed herein. The disclosed receivers, mixers, and methods enable a receiver to achieve the advantages of switching mixers while greatly reducing the mixer response to the undesired harmonics. A harmonic mixer can include a plurality of mixers coupled to an input signal. A plurality of phases of a local oscillator signal can be generated from a single local oscillator output. Each of the phases can be used to drive an input of one of the mixers. The mixer outputs can be combined to generate a frequency converted output that has harmonic rejection.
Abstract:
Receiver architectures and methods of processing harmonic rich input signals employing harmonic suppression mixers are disclosed herein. The disclosed receivers, mixers, and methods enable a receiver to achieve the advantages of switching mixers while greatly reducing the mixer response to the undesired harmonics. A harmonic mixer can include a plurality of mixers coupled to an input signal. A plurality of phases of a local oscillator signal can be generated from a single local oscillator output. Each of the phases can be used to drive an input of one of the mixers. The mixer outputs can be combined to generate a frequency converted output that has harmonic rejection.
Abstract:
Methods and systems for I/Q mismatch calibration and compensation for wideband communication receivers may comprise receiving a plurality of radio frequency (RF) channels, downconverting the received plurality of received RF channels to baseband frequencies, determining and removing average in-phase (I) and quadrature (Q) gain and phase mismatch of the downconverted channels, determining a residual phase and amplitude tilt of the downconverted channels with removed average I and Q gain and phase mismatch, and compensating for said residual phase and amplitude tilt I and Q gain and phase mismatch of the downconverted channels. The determined phase tilt may be compensated utilizing a phase tilt correction filter, which may comprise one or more all-pass filters. The average I and Q gain and phase mismatch may be determined utilizing a blind source separation (BSS) estimation algorithm.
Abstract:
A receiver can be configured to include an RF front end that is configured to downconvert a received signal to a baseband signal or a low Intermediate Frequency (IF) signal. The receiver can downconvert the desired signal from an RF frequency in the presence of numerous interference sources to a baseband or low IF signal for filtering and channel selection. The filtered baseband or low IF signal can be converted to a digital representation. The digital representation of the signal can be upconverted in the digital domain to a programmable IF frequency. The digital IF signal can be converted to an analog IF signal that can be processed by legacy hardware.
Abstract:
A dual conversion receiver architecture that converts a radio frequency signal to produce a programmable intermediate frequency whose channel bandwidth and frequency can be changed using variable low-pass filtering to accommodate multiple standards for television and other wireless standards. The dual conversion receiver uses a two stage frequency translation and continual DC offset removal. The dual conversion receiver can be completely implemented on an integrated circuit with no external adjustments.
Abstract:
A wireless communication receiver includes a multitude of look-up tables each storing a multitude of DC offset values associated with the gains of an amplification stage disposed in the wireless communication receiver. The entries for each look-up table are estimated during a stage of the calibration phase. During such a calibration stage, for each selected gain of an amplification stage, a search logic estimates a current DC offset number and compares it to a previous DC offset estimate that is fed back to the search logic. If the difference between the current and previous estimates is less than a predefined threshold value, the current estimate is treated as being associated with the DC offset of the selected gain of the amplification stage and is stored in the look-up table. This process is repeated for each selected gain of each amplification stage of interest until the look-up tables are populated.
Abstract:
A wireless diversity receiver includes, in part, N signal processing paths, a bin-wise combiner, and an inverse transformation module. Each signal processing path includes, in part, a mixer adapted to downconvert a frequency of an RF signal received by that path, an analog-to-digital converter adapted to convert the downconverted signal from an analog signal to a digital signal, and a transformation block adapted to transform the digital signal represented in time domain to an associated frequency domain signal having M subband signals. The bin-wise combiner is configured to combine the corresponding subband signals of the N paths. The inverse transformation block is configured to transform the output of the bin-wise combiner to an associated time-domain signal.
Abstract:
A diversity receiver and methods of diversity combining are described herein. Diversity combining can be implemented in the front-end signal path of a receiver, without the need to digitally demodulate the baseband signals. Each diversity path is downconverted using a common LO. A portion of each downconverted diversity path is filtered and coupled to an input of a correlator. The diversity paths are paired for the purposes of correlation. The output of the correlator is used to adjust the phase of one of the diversity paths. The amplitude of each diversity path can be equalized or can be adjusted based on a signal metric. The phase adjusted diversity signals can be summed in a signal combiner. The summed signal can be processed as a single receive signal using a single filter and baseband processor.
Abstract:
Linear wide dynamic range variable gain amplifiers can be configured using a variable gain amplifier having an abbreviated gain control range in combination with a discrete attenuator controlled to select an attenuation from a predetermined set of attenuation values. The variable gain amplifier is configured to provide substantially linear gain control over the abbreviated gain control range, where the abbreviated gain control range is less than a total desired gain control range. The difference between adjacent attenuation values in the set of attenuation values is configured to be approximately less than or equal to the abbreviated gain control range.