Abstract:
A high performance and cost effective method of RF-digital hybrid mode power amplifier systems with high linearity and high efficiency for multi-frequency band wideband communication system applications is disclosed. The present disclosure enables a power amplifier system to be field reconfigurable and support multiple operating frequency bands on the same PA system over a very wide bandwidth. In addition, the present invention supports multi-modulation schemes (modulation agnostic), multi-carriers and multi-channels.
Abstract:
A method of determining a carrier power in a communications system including a processor includes a) setting a power differential between a reference carrier and one or more carriers, b) measuring a number of satisfied users at the power differential, and c) measuring a capacity for the satisfied users at the power differential. The method also includes d) increasing the power differential by a predetermined amount and e) determining, using the processor, that the number of satisfied users at the increased power differential is greater than or equal to the number of satisfied users at the power differential. The method further includes f) repeating a)-c) and g) setting the carrier power at an iterated power level.
Abstract:
The present disclosure is a novel utility of a software defined radio (SDR) based Distributed Antenna System (DAS) that is field reconfigurable and support multi-modulation schemes (modulation-independent), multi-carriers, multi-frequency bands and multi-channels. The present disclosure enables a high degree of flexibility to manage, control, enhance, facilitate the usage and performance of a distributed wireless network such as flexible simulcast, automatic traffic load-balancing, network and radio resource optimization, network calibration, autonomous/assisted commissioning, carrier pooling, automatic frequency selection, frequency carrier placement, traffic monitoring, traffic tagging, pilot beacon, etc.
Abstract:
A system for routing signals in a Distributed Antenna System includes a plurality of Digital Access Units (DAUs) and a plurality of Digital Remote Units (DRUs). The plurality of DAUs are coupled and operable to route signals between the plurality of DAUs. The plurality of DRUs are coupled to the plurality of DAUs and operable to transport signals between DRUs and DAUs. The system also includes a plurality of Base Transceiver Stations (BTS) and a plurality of Base Transceiver Station sector RF connections coupled to the plurality of DAUs and operable to route signals between the plurality of DAUs and the plurality of Base Transceiver Stations sector RF port connections. The system further includes one or more delay compensation merge units operable to delay signals transmitted from or received by each of the plurality of DRUs.
Abstract:
The present disclosure is a novel utility of a software defined radio (SDR) based Distributed Antenna System (DAS) that is field reconfigurable and support multi-modulation schemes (modulation-independent), multi-carriers, multi-frequency bands and multi-channels. The present invention enables a high degree of flexibility to manage, control, enhance, facilitate the usage and performance of a distributed wireless network such as Flexible Simulcast, automatic traffic load-balancing, network and radio resource optimization, network calibration, autonomous/assisted commissioning, carrier pooling, automatic frequency selection, frequency carrier placement, traffic monitoring, traffic tagging, pilot beacon, etc. As a result, a DAS in accordance with the present invention can increase the efficiency and traffic capacity of the operators' wireless network.
Abstract:
A method for transporting communications signals includes receiving an analog IF signal at a first unit. The analog IF signal includes a first carrier having a first frequency and a first bandwidth and a second carrier having a second frequency different from the first frequency and a second bandwidth. The analog IF signal is converted to a digitally sampled IF signal having the first carrier located in a first Nyquist zone, the second carrier located in a second Nyquist zone, an image of the first carrier located in a third Nyquist zone, and an image of the second carrier located in the third Nyquist zone. The image of the first carrier and the image of the second carrier is transmitted from the first unit to a second unit, where the image of the first carrier and the image of the second carrier is then converted to the analog IF signal.
Abstract:
A method of operating a communications system includes receiving a signal at a digital predistorter (DPD), introducing predistortion to the signal using the DPD, and converting the predistorted signal to an analog signal using a digital-to-analog converter having a first bandwidth. The method also includes amplifying the analog signal, sampling the amplified signal using an analog-to-digital converter having a second bandwidth less than the first bandwidth, and extracting coefficients of the DPD from the sampled signal.
Abstract:
A high performance and cost effective method of RF-digital hybrid mode power amplifier systems with high linearity and high efficiency for multi-frequency band wideband communication system applications is disclosed. The present disclosure enables a power amplifier system to be field reconfigurable and support multiple operating frequency bands on the same PA system over a very wide bandwidth. In addition, the present invention supports multi-modulation schemes (modulation agnostic), multi-carriers and multi-channels.
Abstract:
A method of determining a carrier power in a communications system including a processor includes a) setting a power differential between a reference carrier and one or more carriers, b) measuring a number of satisfied users at the power differential, and c) measuring a capacity for the satisfied users at the power differential. The method also includes d) increasing the power differential by a predetermined amount and e) determining, using the processor, that the number of satisfied users at the increased power differential is greater than or equal to the number of satisfied users at the power differential. The method further includes f) repeating a)-c) and g) setting the carrier power at an iterated power level.
Abstract:
A digital predistortion linearization method is provided for increasing the instantaneous or operational bandwidth for RF power amplifiers employed in wideband communication systems. Embodiments of the present invention provide a method of increasing DPD linearization bandwidth using a feedback filter integrated into existing digital platforms for multi-channel wideband wireless transmitters. An embodiment of the present invention utilizes a DPD feedback signal in conjunction with a low power band-pass filter in the DPD feedback path.