摘要:
A magnetoresistive element has a ferromagnetic double tunnel junction having a stacked structure of a first antiferromagnetic layer/a first ferromagnetic layer/a first dielectric layer/a second ferromagnetic layer/a second dielectric layer/a third ferromagnetic layer/a second antiferromagnetic layer. The second ferromagnetic layer that is a free layer consists of a Co-based alloy or a three-layered film of a Co-based alloy/a Ni—Fe alloy/a Co-based alloy. A tunnel current is flowed between the first ferromagnetic layer and the third ferromagnetic layer.
摘要:
It is possible to obtain excellent heat stability even though the element is miniaturized and keep stable magnetic domains even though switching is repeated any number of times. A magneto-resistive effect element includes: a magnetization-pinned layer including a magnetic film having a spin moment oriented in a direction perpendicular to a film surface thereof and pinned in the direction; a magnetic recording layer having a spin moment oriented in a direction perpendicular to a film surface thereof; a nonmagnetic layer formed between the magnetization-pinned layer and the magnetic recording layer; and an anti-ferromagnetic film formed on at least side surfaces of the magnetization-pinned layer.
摘要:
A spin-injection magnetic random access memory according to an embodiment of the invention includes a magnetoresistive element having a magnetic fixed layer whose magnetization direction is fixed, a magnetic recording layer whose magnetization direction can be changed by injecting spin-polarized electrons, and a tunnel barrier layer provided between the magnetic fixed layer and the magnetic recording layer, a bit line which passes spin-injection current through the magnetoresistive element, the spin-injection current being used for generation of the spin-polarized electrons, a writing word line through which assist current is passed, the assist current being used for the generation of an assist magnetic field in a magnetization easy-axis direction of the magnetoresistive element, and a driver/sinker which determines a direction of the spin-injection current and a direction of the assist current.
摘要:
The present invention relates to a magnetoresistive effect element, which has a large MR ratio, excellent thermostability and a small switching magnetic field even if its size is decreased, and a magnetic memory using the magnetoresistive effect element. The magnetoresistive effect element includes: a storage layer formed by stacking a plurality of ferromagnetic layers via non-magnetic layers; a magnetic film having at least one ferromagnetic layer; and a tunnel barrier layer provided between the storage layer and the magnetic film. Each of the ferromagnetic layers of the storage layer is formed of an Ni—Fe—Co ternary alloy. A peak-to-peak maximum surface roughness on each of an interface between the storage layer and the tunnel barrier layer and an interface between the magnetic film and the tunnel barrier layer is 0.4 nm or less.
摘要:
A magnetic switching element includes: a ferromagnetic layer which is substantially pinned in magnetization in one direction; and a magnetic semiconductor layer provided within a range where a magnetic field from the ferromagnetic layer reaches, where the magnetic semiconductor layer changes its state from a paramagnetic state to a ferromagnetic state by applying a voltage thereto, and a magnetization corresponding to the magnetization of the ferromagnetic layer is induced in the magnetic semiconductor layer by applying a voltage to the magnetic semiconductor layer.
摘要:
A spin memory includes a magneto-resistance element having a first ferromagnetic layer in which a magnetization direction is pinned, a second ferromagnetic layer in which a magnetization direction changes, and a first nonmagnetic layer between the first and second ferromagnetic layers, a lower electrode and an upper electrode extending in a direction between 45 degrees and 90 degrees relative to an axis of hard magnetization of the second ferromagnetic layer, and sandwiching the magneto-resistance element at one end in a longitudinal direction, a switching element connected to another end in a longitudinal direction of the lower electrode, and a bit line connected to another end in a longitudinal direction of the upper electrode, wherein writing is carried out by supplying spin-polarized electrons to the second ferromagnetic layer and applying a magnetic field from the lower electrode and the upper electrode to the second ferromagnetic layer.
摘要:
It is possible to provide a magnetoresistive effect element which has thermal stability even if it is made fine and in which the magnetization in the magnetic recording layer can be inverted at a low current density. A magnetoresistive effect element includes: a magnetization pinned layer having a magnetization pinned in a direction; a magnetization free layer of which magnetization direction is changeable by injecting spin-polarized electrons into the magnetization free layer; a tunnel barrier layer provided between the magnetization pinned layer and the magnetization free layer; a first antiferromagnetic layer provided on the opposite side of the magnetization pinned layer from the tunnel barrier layer; and a second antiferromagnetic layer which is provided on the opposite side of the magnetization free layer from the tunnel barrier layer and which is thinner in thickness than the first antiferromagnetic layer.
摘要:
A resin-made interior member for an opening and closing body of the invention is a resin-made interior member to be attached to an inside of an outer panel of the opening and closing body and is formed by an injection molding method using a molding material of polypropylene type resin containing a reinforcing fiber and rubber and by properly setting the respective contents of the reinforcing fiber and the rubber component, the modulus of bend elasticity is improved by blending the reinforcing fiber without being accompanied with deterioration of the moldability as the material resin and the appearance of the molded product to improve rigidity of the interior member and impact resistance is assured by blending the rubber component to give the interior member with good moldability and appearance in form of the molded product and having a required rigidity and impact resistance.
摘要:
A guide apparatus including a track rail and a moving block is free from the possibility of foreign matter entering the moving block through the gaps between the side surfaces of the track rail and the inner side surfaces of the moving block even in an environment where many fine dust particles are flying. A guide apparatus has a track rail and a moving block 20 relatively movably attached to the track rail with rolling elements interposed therebetween. The rolling elements recirculate through rolling element recirculation passages. Foreign matter entry preventing plates 34 are provided so that their respective distal ends longitudinally contact the opposite side surfaces of the track rail to close the gaps between the side surfaces of the track rail and at least the inner side surfaces of skirt portions on both sides of a moving block body 21 and the inner side surfaces of end plates of the moving block 20.
摘要:
It is possible to perform a writing operation with low power consumption and a low current, and enhance reliability without causing element breakdown. There are provided a first magnetization-pinned layer including at least one magnetic film in which a magnetization direction is pinned; a second magnetization-pinned layer including at least one magnetic film in which a magnetization direction is pinned; a magnetic recording layer formed between the first magnetization-pinned layer and the second magnetization-pinned layer and including at least one magnetic film in which a magnetization direction is changeable by injecting spin-polarized electrons; a tunnel barrier layer formed between the first magnetization-pinned layer and the magnetic recording layer; and a nonmagnetic intermediate layer formed between the magnetic recording layer and the second magnetization-pinned layer. The magnetization direction of the magnetic film of the first magnetization-pinned layer on the magnetic recording layer side is substantially anti-parallel to the magnetization direction of the magnetic film of the second magnetization-pinned layer on the magnetic recording layer side.