Abstract:
Systems, methods, and instrumentalities are described to implement an interference management method in a WLAN. An access point (AP) or an inter-BSS coordinator (IBC) may identify a station (STA) associated with a first basic service set (BSS) as an edge STA or a non-edge STA. The AP or the IBC may group the edge STA into an edge group and a non-edge STA into a non-edge group. The AP or the IBC may receive information associated with a second BSS. The AP or the IBC may coordinate access of the edge group and/or the non-edge group. The access may be coordinated to minimize interference of the edge STA. The access may be based at least on the received information associated with the second BSS. The AP or the IBC may adjust transmit power of a plurality of STAs identified as edge group STAs and non-edge group STAs.
Abstract:
A method, a wireless transmit/receive unit (WTRU) and a base station for transferring small packets are described. The WTRU generates a packet that has one or more of a medium access control (MAC) or a physical layer convergence protocol (PLCP) header, the one or more of the MAC or the PLCP header including a field. On a condition that the WTRU has data buffered for transmission, the WTRU includes in the field information that indicates a time or a transmission opportunity (TXOP) needed to transmit at least one packet of data that the WTRU has buffered for transmission. The WTRU transmits the packet to another WTRU in the wireless network. The WTRU receives another packet from the other WTRU with a granted TXO) based on the time needed to transmit the at least one packet of the data that the WTRU has buffered for transmission.
Abstract:
WTRUs, access points (APs) and methods thereon are disclosed. A method on a WTRU may include receiving a message from an AP that comprises a beamformee capability element; sending a second message to the AP that comprises a beamformer capability element; and receiving, from the AP, a third message in response to the second message that indicates a group to which the WTRU is assigned. The group may be based on the beamformer capability element and the group may indicate UL transmission information to be used by the WTRU. A method on an AP may include determining a group for multiple WTRUs based on a received beamformer capability element. A method on a WTRU may include sending to an AP a message with a low overhead preamble for UL MU-MIMO. The low overhead preamble may include LTFs that enable the AP to distinguish the WTRU from other WTRUs.
Abstract:
A medium access control (MAC) frame having a short MAC header with at least two address fields and an indicator field that indicates it is a short MAC header is provided. The indicator field may indicate a presence of a third or fourth address field in the short MAC header. The indication may be a one, two, or any number of bits indicator.
Abstract:
A method for active scanning in a wireless network may include two transmitters. In such a method, the following steps may take place: detecting a first probe request having a scanning target originating from a first transmitter; desiring to send a probe request to the scanning target from a second transmitter; and canceling the second probe request on a condition that the second transmitter detects the first probe request.
Abstract:
A method for beacon information provisioning, transmissions and protocol enhancements includes defining multiple level beacons based on the attributes of beacon information fields/elements. A short beacon may be used in addition to a primary beacon in space-time block code (STBC) modes, non-STBC modes and in multiple bandwidth modes. The short beacons may also be used for Fast Initial Link Setup (FILS) and to extend system coverage range. Beacon transmissions may use adaptive modulation and coding set/scheme (MCS).
Abstract:
Enhanced protocols and devices may be used to alleviate loss of spectrum efficiency in wideband transmission. The protocols may implement a wideband transmission opportunity (TXOP) truncation where one or more of the channels involved in communication over the wideband are released. In one scenario, an access point (AP) may receive, from a wireless transmit receive unit (WTRU), a first CF-End frame that includes a duration field and a basic service set identifier (BSSID) field that includes an individual/group bit. On a condition that the individual/group bit of the BSSID field has a value of one (1), the AP may determine that a scrambling sequence of the first CF-End frame indicates a bandwidth associated with a transmit opportunity (TXOP) being truncated by the WTRU. The AP may then transmit a second CF-End frame at the bandwidth indicated by the scrambling sequence of the first CF-End frame.
Abstract:
An AP/PCP may perform user selection/pairing/grouping based on a measurement of an analog transmission (e.g., signal to noise ratio (SNR) or signal to interference plus noise ratio (SINR)). The SNRs may be used, for example by the station, to determine best beams and/or beam pairs and/or worst beams and/or beam pairs. A station may feed back the best few beams and/or beam pairs for a Tx and Rx virtual antenna pair. A station may feed back the worst few beams for the Tx and Rx virtual antenna pair. The AP/PCP may receive the indication(s) and/or use the indication(s) to group the stations.
Abstract:
Methods and apparatuses are described herein for multiple AP coordination in wireless local area networks (WLANs). For example, a station (STA) may receive, from a first access points (APs), a probe response frame that includes one or more indicators indicating multiple AP operation capabilities of the first AP and a second AP. The STA may transmit, to at least one of the first AP or the second AP, a multiple AP association request frame that enables the first AP to be associated with the second AP for a multiple AP operation. The STA may receive, from the first AP, a first multiple AP association response frame indicating acceptance or rejection of the multiple AP operation with the first AP. The STA may receive, from the second AP, a second multiple AP association response frame indicating acceptance or rejection of the multiple AP operation with the second AP.
Abstract:
A STA may comprise a receiver configured to receive, from an AP, a first polling frame addressed to a broadcast address and sent to a plurality of STAs. The first polling frame may indicate a plurality of sub-channels. The STA may further comprise a transmitter configured to transmit, to the AP, a first PPDU indicating SNR information, on one or more sub-channels of the plurality of sub-channels, a SIFS after the first polling frame is received. The transmitter may be configured to transmit the first PPDU while a second PPDU is transmitted to the AP by another STA of the plurality of STAs, wherein the second PPDU is transmitted on one or more other sub-channels of the plurality of sub-channels.