Abstract:
Systems and methods that provide satellite-based media processing are described. In one embodiment, a system that exchanges media may include, for example, a communications device that may be coupled to a network and to an antenna. The communications device may provide two-way communications with the network and may provide one-way communications with the antenna. The communications may receive media content from the antenna and/or the network. The communications device may send the media content to the network.
Abstract:
A wireless terminal displays its location and navigation information (map segment) on its display. The wireless terminal accesses a Global Positioning System (GPS) receiver of the wireless terminal to determine its location coordinates. The wireless terminal determines a maximum data size for navigation information to be downloaded. The wireless terminal sends a navigation information download request to a map server via a supporting wireless network infrastructure that includes the location coordinates and the maximum data size. The wireless terminal receives navigation information that has a data size no greater than the maximum data size and displays the navigation information on the display. The wireless terminal may display a map segment and an icon representing the wireless terminal at a location corresponding to the location coordinates of the wireless terminal with respect to the map segment. The wireless terminal may download a premises map from a premises map server.
Abstract:
A system and method for encoding dynamic image information for an image generated by a computer application executing on a processor. Various aspects of the present invention may comprise determining a first set of information describing a reference image. A second set of information may be determined for describing an image, wherein the second set of information comprises information indicative of movement between the image and the reference image. For example, a set of primary movement directions may be determined based at least in part on the computer application generating the image. Such set of primary movement directions may be utilized for analyzing the image relative to the reference images. The difference between the image and the reference image may, for example, be analyzed using at least one of the set of primary movement directions. A movement direction may, for example, be utilized to describe the image.
Abstract:
A wireless network infrastructure that adapts frame parameters of concurrent interfering receptions in response to the dynamically varying channel conditions. The channel conditions are determined by number of associated wireless end point devices within a cell, their capabilities, anticipated bandwidth usage, QOS (Quality Of Service) demands, priority of service and idle states, cell overlap interferences, near-far interferences and noises. The wireless network infrastructure contains a wireless access point within the cell that assigns a mode to a frame or sub-frame and adapts to channel conditions by varying mode durations and payload lengths. The modes include single transmission mode, plurality of partial concurrent interfering transmission modes and full concurrent interfering transmission mode. These modes allow single as well as concurrent interfering transmissions and receptions of varying payload lengths.
Abstract:
A wireless network infrastructure that adapts between single and concurrent interfering transmissions and receptions based on dynamically varying channel conditions. The channel conditions variations are typically determined by the number of associated wireless end point devices within the cell, their capabilities, anticipated bandwidth usage, QOS (Quality Of Service) demands, priority of service, idle states, cell overlap interferences, near-far interferences, and noises. The wireless network infrastructure supports a plurality of end point devices and contains an access point. The access point defines at least one first portion of a frame wherein transmissions and receptions are limited to single transmissions and receptions, and at least one second portion of the frame wherein concurrent interfering transmissions and receptions are permitted. The access point responds to the dynamically varying channel conditions by adapting a frame between the first portion that allows single transmissions and the second portion that allows concurrent interfering transmissions.
Abstract:
Spatial mapping of wireless access point service area. A means is presented by which a WACN's (Wireless Access Control Node's) service area is spatially mapped providing information corresponding to coverage region(s) within the WACN's service area. This spatial mapping may be generated and stored within either communication device at either end of a communication link (e.g., in a WACN or in a communication device operable to connect to the WACN). From the WACN's perspective, the spatial map can include its one or more coverage regions within its service area. From a communication device's perspective (e.g., a communication device that is capable to connect to a WACN), the spatial map can include multiple service areas provided by multiple WACNs and the various coverage regions therein. The partitioning of a WACN's service area into coverage areas can be performed along various lines (e.g., signal strength, history of connectivity, operational parameters employed, etc.).
Abstract:
Wireless terminal filtering attachment decisions based upon type(s) of available network(s). A novel approach is presented by which one or more filter parameters is applied when making decisions of which WAP (Wireless Access Point) (e.g., including wireless local area network access points, WiMAX access points, or cellular access points) is appropriate or valid with which to associate and through which to connect to a communication network (i.e., the Internet). Certain filter parameter sets can be implemented, and changed over time (e.g., via user selection or adaptively), so that different filter parameters apply in different situations. Generally, a plurality of detected WAPs can be partitioned into available WAPs and non-available WAPs. This division can be along (1) private vs. (2) non-private, (1) private (authorization is granted) and non-private vs. (2) private (no authorization is granted), or a variety of other lines.
Abstract:
Altering communication interface parameters based upon mobility. A novel approach is presented in which at least one operational parameter is changed as a function of the mobility of a wireless terminal. The changing of the operational parameter (which can be performed by either the wireless terminal, a WAP, or cooperatively by both) can include changing an entire protocol or only one operational parameter within the protocol. The mobility measure can be any one or combination of velocity (rate of change of position), acceleration, position within the network, or other measure. The mobility can be an average mobility over a period of time, or it can be an instantaneous mobility. The operational parameter can be changed by either communication device at each end of a communication link or in part, by both (e.g., either by a WAP (Wireless Access Point) or a communication device connected thereto, or by cooperation there between).
Abstract:
Video player circuitry used with encoded source video and a display. Decoder circuitry receives encoded source video and decodes the encoded source video to produce a sequence of full frames of video data. Pre-processing circuitry, pursuant to sub-frame information, generates a plurality of sequences of sub-frames of video data from the sequence of full frames of video data, a first sequence of the plurality of sequences of sub-frames of video data having a different center point within the sequence of full frames of video data than that of a second sequence of the plurality of sequences of sub-frames of video data. Post-processing circuitry, pursuant to supplemental information, modifies the plurality of sequences of sub-frames of video data to produce an output. Interface circuitry that delivers the output for subsequent presentation on the display.
Abstract:
A removable storage media is received by and interacts with both a first video player system and a second video player system. The first video player system has a first video display that has a first display characteristic and the second video player system has a second video display that has a second display characteristic, the first display characteristic being different from the second display characteristic. The removable storage media includes a plurality of storage locations and stores a sequence of full frames of video data, first sub-frame metadata, and second sub-frame metadata. The first sub-frame metadata is generated and the second sub-frame metadata are used to process the full frames of video data to correspond to the first video display and the second video display, respectively.