摘要:
Described is a CMOS transistor structure with a multi-layered gate electrode structure and a method of fabrication. The gate electrode structure has a three-layered metallic gate electrode and a polysilicon layer. The first metallic layer acts as a barrier to prevent the second metallic layer from reacting with an underlying dielectric. The second metallic layer acts to set the work function of the gate electrode structure. The third metallic layer acts as a barrier to prevent the second metallic layer from reacting with the polysilicon layer. The method of fabricating the gate electrode structure includes forming the three metallic layers thick enough that each layer provides the barrier and work-function setting functions mentioned above, but also thin enough that a subsequent wet-etch can be performed without excessive undercutting of the metallic layers. During implant and anneal processes, the polysilicon layer acts as a protective mask over the metallic layers to protect an underlying silicon substrate from interacting with dopants used during the implant process.
摘要:
A method including forming a via dielectric layer on a semiconductor device substrate; forming a trench dielectric layer on the via dielectric layer; forming a trench through the trench dielectric layer to expose the via dielectric layer; forming a via in the via dielectric layer through the trench to expose the substrate; and forming a semiconductor material in the via and in the trench. An apparatus including a device substrate; a dielectric layer formed on a surface of the device substrate; and a device base formed on the dielectric layer including a crystalline structure derived from the device substrate.
摘要:
Described is a CMOS transistor structure with a multi-layered gate electrode structure and a method of fabrication. The gate electrode structure has a three-layered metallic gate electrode and a polysilicon layer. The first metallic layer acts as a barrier to prevent the second metallic layer from reacting with an underlying dielectric. The second metallic layer acts to set the work function of the gate electrode structure. The third metallic layer acts as a barrier to prevent the second metallic layer from reacting with the polysilicon layer. The method of fabricating the gate electrode structure includes forming the three metallic layers thick enough that each layer provides the barrier and work-function setting functions mentioned above, but also thin enough that a subsequent wet-etch can be performed without excessive undercutting of the metallic layers. During implant and anneal processes, the polysilicon layer acts as a protective mask over the metallic layers to protect an underlying silicon substrate from interacting with dopants used during the implant process.
摘要:
Described is a CMOS transistor structure with a multi-layered gate electrode structure and a method of fabrication. The gate electrode structure has a three-layered metallic gate electrode and a polysilicon layer. The first metallic layer acts as a barrier to prevent the second metallic layer from reacting with an underlying dielectric. The second metallic layer acts to set the work function of the gate electrode structure. The third metallic layer acts as a barrier to prevent the second metallic layer from reacting with the polysilicon layer.
摘要:
A transistor is described having a source electrode and a drain electrode. The transistor has at least one semiconducting carbon nanotube that is electrically coupled between the source and drain electrodes. The transistor has a gate electrode and dielectric material containing one or more quantum dots between the carbon nanotube and the gate electrode.
摘要:
A dielectric deposited on a substrate may be exposed to a salt solution. While exposed to the salt solution, an oxide is deposited on the dielectric.
摘要:
A transistor is described having a source electrode and a drain electrode. The transistor has at least one semiconducting carbon nanotube that is electrically coupled between the source and drain electrodes. The transistor has a gate electrode and dielectric material containing one or more quantum dots between the carbon nanotube and the gate electrode.
摘要:
A transistor is described having a source electrode and a drain electrode. The transistor has at least one semiconducting carbon nanotube that is electrically coupled between the source and drain electrodes. The transistor has a gate electrode and dielectric material containing one or more quantum dots between the carbon nanotube and the gate electrode.
摘要:
A transistor is described having a source electrode and a drain electrode. The transistor has at least one semiconducting carbon nanotube that is electrically coupled between the source and drain electrodes. The transistor has a gate electrode and dielectric material containing one or more quantum dots between the carbon nanotube and the gate electrode.