摘要:
A method of utilizing a multilayer photoresist to form contact holes and/or conductors utilizing a dual damascene process includes utilizing layered photoresists. A contact in a conductive line can be formed in a single deposition step or in a two-stage deposition step. Image layers can remain as part of the interconnect structure or be removed by a polishing technique. The process can be utilized for any conductive structures provided above a substrate of an integrated circuit.
摘要:
One aspect of the present invention relates to a method of dual damascene processing, involving forming a plurality of via openings in the insulation structure containing a single layer of a dielectric material; and simultaneously (i) forming a plurality of trenches in the insulation structure, each trench positioned along the substantially straight line of a group of via openings, and (ii) monitoring the formation of trenches using a scatterometry system to determine trench depth, and terminating forming the trenches when a desired trench depth is attained.
摘要:
One aspect of the present invention relates to a feedback-driven, closed loop system/method for obtaining consistently formed semiconductor structures. The system/method involves controlling the progression of a lithography process such as a deposition or etching process. The system employs one or more piezoelectric sensors, such as quartz crystal sensors, integrated on a wafer. During the lithography process, the sensors produce frequency data which is analyzed and communicated to a lithography process controller in order to modulate one or more process parameters and/or one or more process components. The frequency data indicates the progression of the lithography process and facilitates determining whether the parameters/components need correction to obtain structures which are consistent throughout the wafer and from wafer to wafer. Data generated by each sensor located at an area on the wafer may be cross-referenced with data from other sensors on the wafer and with data from other wafers to ensure uniformity and consistency among the wafers.
摘要:
Disclosed is a wafer containing a semiconductor substrate, at least one metal layer formed over the semiconductor substrate, and at least one electrical sensor embedded at least one of on and in the wafer to facilitate real time monitoring of the metal layer as it progresses through a subtractive metallization process. The system contains a wafer comprising at least one metal layer formed on a semiconductor substrate, at least one electrical sensor in contact with the wafer and operable to detect and transmit electrical activity associated with the wafer, and an electrical measurement station operable to process electrical activity detected and received from the electrical sensor for monitoring a subtractive metallization process in real-time.
摘要:
There is provided a method of making a dual inlaid via in a first layer. The first layer may be a polymer intermetal dielectric, such as HSQ, of a semiconductor device. The method includes forming a first opening, such as a via, in the first layer and forming a bilayer resist in the first opening. The bilayer resist includes an imaging layer above a bottom antireflective coating (BARC). The imaging layer is selectively exposed to radiation such that no radiation reaches the lower section of the BARC in the first opening through the upper section of the BARC. The bilayer resist is pattered, and a second opening, such as a trench, is formed in communication with the first opening using the patterned bilayer resist as a mask.
摘要:
A method of forming a via structure is provided. In the method, a dielectric layer is formed on an anti-reflective coating (ARC) layer covering a first metal layer; and a transition metal layer is formed on the dielectric layer. An ultra-thin photoresist layer is formed on the transition metal layer, and the ultra-thin photoresist layer is patterned with short wavelength radiation to define a pattern for a via. The patterned ultra-thin photoresist layer is used as a mask during a first etch step to transfer the via pattern to the transition metal layer. The first etch step includes an etch chemistry that is selective to the transition metal layer over the ultra-thin photoresist layer and the dielectric layer. The transition metal layer is employed as a hard mask during a second etch step to form a contact hole corresponding to the via pattern by etching portions of the dielectric layer.
摘要:
In one embodiment, the present invention relates to a method of forming a conductive structure having a width of about 100 nm or less, involving the steps of providing a substrate having a conductive film; patterning a photoresist over a first portion of the conductive film wherein a second portion of the conductive film is exposed, the photoresist having at least one sidewall over the conductive film; depositing a sidewall film over the conductive film and the photoresist, the sidewall film having a vertical portion adjacent the sidewall of the photoresist and a horizontal portion in areas not adjacent the sidewall of the photoresist; removing the horizontal portion of the sidewall film exposing a third portion of the conductive film; removing the photoresist exposing a fourth portion of the conductive film; and etching the third portion and the fourth portion of the conductive film thereby providing the conductive structure having a width of about 100 nm or less underlying the vertical portion of the sidewall film.
摘要:
A method for fabricating a T-gate structure is provided. The method comprises the steps of providing a silicon layer having a gate oxide layer, a protection layer over the gate oxide layer, a first sacrificial layer over the protection layer and a second sacrificial layer over the first sacrificial layer. A photoresist layer is formed over the second sacrificial layer. An opening is formed in the photoresist layer. An opening is then formed in the second sacrificial layer beneath the opening in the photoresist layer. The opening is then expanded in the photoresist layer to expose portions of the top surface of the second sacrificial layer around the opening in the second sacrificial layer. The opening is extended in the second sacrificial layer through the first sacrificial layer and the opening is expanded in the second sacrificial layer to form a T-shaped opening in the first and second sacrificial layers. The photoresist layer is removed and the T-shaped opening is filled with a conductive material.
摘要:
In one embodiment, the present invention relates to a method of forming a sub-lithographic via or contact, involving the steps of providing a substrate comprising a conductor having a width of about 0.25 &mgr;m or less over a portion of the substrate and an insulating film over the conductor and the substrate; etching a preliminary via in the insulating film over the conductor, the preliminary via defined by sidewalls in the insulating film; depositing a CVD layer over the substrate, the insulating film, and the conductor, the CVD layer having a vertical portion adjacent the sidewalls of the insulating film and a horizontal portion in areas not adjacent the sidewalls of the insulating film; removing the horizontal portion of the CVD layer thereby forming the sub-lithographic via over the conductor, and depositing a conductive material into the sub-lithographic via to form a sub-lithographic contact, the sub-lithographic via and/or sub-lithographic contact having a width of less than about 0.25 &mgr;m.
摘要:
In one embodiment, the present invention relates to a method of forming a thin photoresist layer having a low defect density, involving the steps of depositing a photoresist layer having a thickness from greater than about 0.5 &mgr;m to about 2 &mgr;m on a semiconductor substrate; and removing at least a portion of the photoresist layer to provide the thin photoresist layer having the low defect density and a thickness from about 0.1 &mgr;m to about 0.5 &mgr;m. In another embodiment, the present invention relates to a method of reducing pinhole defects in a thin photoresist layer having a thickness below about 0.5 &mgr;m comprising a photoresist material, involving the steps of depositing a layer of the photoresist material having a thickness greater than about 0.5 &mgr;m; and etching at least a portion of the photoresist material to provide the thin photoresist layer having the thickness below about 0.5 &mgr;m, wherein the thickness of the thin photoresist layer is about 90% or less than the thickness of the layer of the photoresist material.