Abstract:
Provided are video encoding and decoding methods and apparatuses. The video encoding method includes: encoding a video based on data units having a hierarchical structure; determining a context model used for entropy encoding a syntax element of a data unit based on at least one piece of additional information of the data units; and entropy encoding the syntax element by using the determined context model.
Abstract:
Provided are video encoding and decoding methods and apparatuses. The video encoding method includes: encoding a video based on data units having a hierarchical structure; determining a context model used for entropy encoding a syntax element of a data unit based on at least one piece of additional information of the data units; and entropy encoding the syntax element by using the determined context model.
Abstract:
A video encoding method is provided, the method includes: encoding a current region of a video by performing a transformation on the current region by using transformation units in a variable tree-structure which are determined from among transformation units that are hierarchically split from a base transformation unit with respect to the current region and which are generated based on a maximum split level of a transformation unit; and outputting encoded data of the current region, information about an encoding mode, and transformation-unit hierarchical-structure information comprising maximum size information and minimum size information of the transformation unit with respect to the video.
Abstract:
A motion prediction method includes determining, when a current slice is a B slice, a reference picture list to be used with respect to a current prediction unit from among prediction units included in a coding unit, and outputting, when a size of the current prediction unit is 4×8 or 8×4, inter-prediction index information of the current prediction unit indicating the reference picture list from among an L0 list and an L1 list, and when the size of the current prediction unit is not 4×8 or 8×4, the inter-prediction index information of the current prediction unit indicating the reference picture list from among the L0 list, the L1 list, and a bi-prediction list.
Abstract:
A method and apparatus for encoding and decoding motion information. The encoding method includes determining whether motion information of spatial prediction units that are spatially collocated to a current prediction unit and motion information of temporal prediction units that are temporally collocated to the current prediction are available; when the number of the motion information of the spatial prediction units and the motion information of the temporal prediction units is less than a predetermined number, generating additional candidate motion information by using the available motion information of the spatial prediction units and the motion information of the temporal prediction units such that the total number of pieces of candidate motion information is the predetermined number; and decoding motion information of the current prediction unit by using the ‘n’ pieces of motion information.
Abstract:
A method and apparatus for encoding and decoding motion information. The encoding method includes determining whether motion information of spatial prediction units that are spatially collocated to a current prediction unit and motion information of temporal prediction units that are temporally collocated to the current prediction are available; when the number of the motion information of the spatial prediction units and the motion information of the temporal prediction units is less than a predetermined number, generating additional candidate motion information by using the available motion information of the spatial prediction units and the motion information of the temporal prediction units such that the total number of pieces of candidate motion information is the predetermined number; and decoding motion information of the current prediction unit by using the ‘n’ pieces of motion information.
Abstract:
Encoding and decoding a video using transformation index that indicates information that indicates a structure of a transformation unit transforming data of a current coding unit.
Abstract:
A method of decoding an image in which wherein, when a prediction mode is an inter prediction mode, not an intra prediction mode, a size of at least one prediction unit in the coding unit is determined independently from a size of at least one transformation unit in the coding unit.
Abstract:
A method and apparatus for encoding and decoding motion information. The encoding method includes determining whether motion information of spatial prediction units that are spatially collocated to a current prediction unit and motion information of temporal prediction units that are temporally collocated to the current prediction are available; when the number of the motion information of the spatial prediction units and the motion information of the temporal prediction units is less than a predetermined number, generating additional candidate motion information by using the available motion information of the spatial prediction units and the motion information of the temporal prediction units such that the total number of pieces of candidate motion information is the predetermined number; and decoding motion information of the current prediction unit by using the ‘n’ pieces of motion information.
Abstract:
A method and apparatus for encoding video by using deblocking filtering, and a method and apparatus for decoding video by using deblocking filtering are provided. The method of encoding video includes: splitting a picture into a maximum coding unit; determining coding units of coded depths and encoding modes for the coding units of the maximum coding unit by prediction encoding the coding units of the maximum coding unit based on at least one prediction unit and transforming the coding units based on at least one transformation unit, wherein the maximum coding unit is hierarchically split into the coding units as a depth deepens, and the coded depths are depths where the maximum coding unit is encoded in the coding units; and performing deblocking filtering on video data being inversely transformed into a spatial domain in the coding units, in consideration of the encoding modes.