Abstract:
Apparatus and methods for operating an autoclave. One embodiment includes a baffle located in an autoclave during a run cycle of the autoclave. A release mechanism secures the baffle in a retracted position during the run cycle, and automatically releases the baffle to a deployed position during the run cycle, when a temperature inside of the autoclave reaches a target temperature, to alter airflow within the autoclave.
Abstract:
A method of forming a composite part may include positioning composite layers onto a part-supporting surface of a support tool. The composite layers combine to form the composite part. The method may also include covering the composite part on the support tool with a vacuum bag, and forming a heat transfer assembly on the vacuum bag in relation to a portion of the composite part. The method may include forming the heat transfer assembly on the vacuum bag by depositing a fluid layer of material onto the vacuum bag, inserting heat transfer promoters into the fluid, and cooling the fluid to form a solid heat transfer assembly.
Abstract:
A system (100) for making a prepreg composite sheet (300) comprising contoured charges (308) comprises first means (102) for forming precursor outline regions (206) in a resin film layer (200). The system (100) also comprises second means (106) for impregnating a fiber reinforcement (220), comprising fibers (222), with the resin film layer (200), comprising the precursor outline regions (206), to form the prepreg composite sheet (300). The prepreg composite sheet (300), as so formed, comprises non-impregnated outline regions (310) that define the contoured charges (308). The non-impregnated outline regions (310) in the prepreg composite sheet (300) correspond to the precursor outline regions (206) in the resin film layer (200). The system (100) further comprises third means (104) for guiding the fiber reinforcement (220) and the resin film layer (200) to the second means (106). The resin film layer (200) comprises the precursor outline regions (206) formed by first means (102).
Abstract:
Composite materials are augmented with functionalized graphene having added amine groups, benzoxazine groups, imide groups, or a combination of amine groups and imide groups on a surface of the graphene, epoxide groups formed on at least one edge of the graphene and/or holes formed through the graphene. The functionalized graphene is integrated into a composite material as a supplement to or as a replacement for either the carbon reinforcement material or the resin matrix material to increase strength of the composite materials, and may be in the form of a functionalized graphene nanoplatelet, a flat graphene sheet or film, or a rolled or twisted graphene sheet or film.
Abstract:
Composite prepreg materials made from a plurality of layers of graphene film having a size that spans an entire width and an entire length of the composite prepreg material, each of the layers of graphene film being functionalized with holes formed through the graphene film, amine groups formed on both an upper and a lower surface of the graphene film, epoxide groups formed on at least one edge of the graphene film, amine monomers and/or epoxy monomers. The plurality of layers may be formed by stacking a plurality of layers of graphene film to form a stacked composite prepreg material or by folding a graphene film to form a crumpled composite prepreg material.
Abstract:
Systems are disclosed for curing composite parts within a container, wherein a pressurized environment may be created via a body of water. Disclosed systems may include the container, a heating system, and a mechanism for raising and/or lowering the container within the body of water. The container may include one or more rigid walls, one or more non-rigid walls, and/or one or more port holes extending through one or more of the rigid walls and/or non-rigid walls. Methods of curing composite parts using such systems are also disclosed. Methods may include providing a container having a cavity configured to receive a composite part, thermally coupling a heating system to the container, inserting the composite part into the cavity, submerging the container under a depth of external liquid, flowing a volume of fluid into the cavity, heating the volume of fluid, thereby curing the composite part.