Abstract:
In a scalable video codec, an adaptive Wiener filter with offset aims to minimize the differences between two input pictures or picture regions, and the filter coefficients need to be transmitted to decoder site.
Abstract:
An adaptive Wiener filter may be applied to improve coding efficiency because of information lost during quantization of the video encoding process. The Wiener filter may be selectively applied globally to an entire picture or locally to portions of the picture. Histogram segmentation may be used to select pixels for Wiener filtering in some embodiments. The Wiener filter may be adaptively applied to histogram bins, improving coding efficiency in some cases.
Abstract:
A video encoder may use an adaptive Wiener filter inside the core video encoding loop to improve coding efficiency. In one embodiment, the Wiener filter may be on the input to a motion estimation unit and, in another embodiment, it may be on the output of a motion compensation unit. The taps for the Wiener filter may be determined based on characteristics of at least a region of pixel intensities within a picture. Thus, the filtering may be adaptive in that it varies based on the type of video being processed.
Abstract:
A system, apparatus, method, and article to process a flexible macroblock ordering and arbitrary slice ordering are described. The apparatus may include a video decoder. The video decoder includes a processor to store coding parameters of one or more neighboring macroblocks in a data buffer. The neighboring macroblocks are previously decoded macroblocks and are adjacent to a current macroblock. The processor is to store control parameters for each of the one or more neighboring macroblocks in the data buffer. The processor is to reconstruct coding parameters for the current macroblock using availability information associated with the neighboring macroblocks.
Abstract:
Systems, apparatus and methods are described including determining a prediction residual for a channel of video data; and determining, using the first channel's prediction residual, a prediction residual for a second channel of the video data. Further, a prediction residual for a third channel of the video data may be determined using the second channel's prediction residual.
Abstract:
Methods and systems to manipulate color processing parameters to allow the detection of an arbitrary color of interest. Such reconfigurations may enable general point-of-interest color processing. Color mapping curves may also be configured, to accomplish the tasks of color correction, enhancement, de-saturation, and color compression.
Abstract:
Systems, methods, and computer program products that can be used to determine a search range (SR) when performing motion estimation at, for example, a video encoder or decoder. Determining a motion vector for a current block during motion estimation may involve searching within a search window that may reside in a reference frame, or in a previously decoded block that spatially or temporally neighbors the current block. Such a search seeks a motion vector that minimizes a metric, such as a sum of absolute differences between corresponding blocks of reference frames. A motion vector that minimizes such a metric may be a good candidate for use in motion estimation. The search may become more efficient if a search range is determined such that the extent of the search is bounded. A search range may be determined at the block level or at the picture level.