摘要:
A method and system for providing a magnetic memory is disclosed. The method and system include providing a plurality of magnetic elements and providing at least one stress-assist layer. Each of the plurality of magnetic elements is configured to be written using spin transfer. The at least one stress-assist layer is configured to exert at least one stress on at least one magnetic element of the plurality of magnetic elements during writing. The reduction of spin-transfer switching current is due to stress exerted by the stress-assist layer on the magnetic elements during writing. Stability of the magnetic memory with respect to thermal fluctuations is not compromised because the energy barrier between the two magnetization states is unchanged once the switching current is turned off.
摘要:
A method and system for providing a magnetic element is disclosed. The method and system include providing a pinned layer, a free layer, and a spacer layer between the pinned and free layers. The spacer layer is nonmagnetic. The magnetic element is configured to allow the free layer to be switched due to spin transfer when a write current is passed through the magnetic element. In one aspect, the method and system include providing a spin engineered layer adjacent to the free layer. The spin engineered layer is configured to more strongly scatter majority electrons than minority electrons. In another aspect, at least one of the pinned, free, and spacer layers is a spin engineered layer having an internal spin engineered layer configured to more strongly scatter majority electrons than minority electrons. In this aspect, the magnetic element may include another pinned layer and a barrier layer between the free and pinned layers.
摘要:
A method and system for providing a magnetic element capable of storing multiple bits is disclosed. The method and system include providing first pinned layer, a first nonmagnetic layer, a first free layer, a connecting layer, a second pinned layer, a second nonmagetic layer and a second free layer. The first pinned layer is ferromagnetic and has a first pinned layer magnetization pinned in a first direction. The first nonmagnetic layer resides between the first pinned layer and the first free layer. The first free layer being ferromagnetic and has a first free layer magnetization. The second pinned layer is ferromagnetic and has a second pinned layer magnetization pinned in a second direction. The connecting layer resides between the second pinned layer and the first free layer. The second nonmagnetic layer resides between the second pinned layer and the second free layer. The second free layer being ferromagnetic and having a second free layer magnetization. The magnetic element is configured to allow the first free layer magnetization and the second free layer magnetization to change direction due to spin transfer when a write current is passed through the magnetic element.
摘要:
A method and system for providing a magnetic element that can be used in a magnetic memory is disclosed. The method and system include providing a first pinned layer, a barrier layer, a free layer, a conductive nonmagnetic spacer layer, and a second pinned layer. Each pinned layer has a pinned layer easy axis. At least a portion of the pinned layer easy axis is in a perpendicular direction. The barrier layer resides between the first pinned layer and the free layer. The spacer layer is between the free layer and the second pinned layer. The free layer has a free layer easy axis, at least a portion of which is in the perpendicular direction. The magnetic element is also configured to allow the free layer to be switched due to spin transfer effect when a write current is passed through the magnetic element. Because of the perpendicular magnetization(s), the writing current for spin transfer may be significantly reduced.
摘要:
A magnetic element that can be used in a memory array having high density includes a pinned layer, a half-metallic material layer, a spacer (or a barrier) layer and a free layer. The half-metallic material layer is formed on the pinned layer and preferably has a thickness that is less than about 100 Å. The half-metallic material layer can be formed to be a continuous layer or a discontinuous on the pinned layer. The spacer (or barrier) layer is formed on the half-metallic material layer, such that the spacer (or barrier) layer is nonmagnetic and conductive (or insulating). The free layer is formed on the spacer (or barrier) layer and has a second magnetization that changes direction based on the spin-transfer effect when a write current passes through the magnetic element.
摘要:
A method and system for providing a magnetic element that can be used in a magnetic memory is disclosed. The method and system include providing a first pinned layer, a barrier layer, a free layer, a conductive nonmagnetic spacer layer, and a second pinned layer. Each pinned layer has a pinned layer easy axis. At least a portion of the pinned layer easy axis is in a perpendicular direction. The barrier layer resides between the first pinned layer and the free layer. The spacer layer is between the free layer and the second pinned layer. The free layer has a free layer easy axis, at least a portion of which is in the perpendicular direction. The magnetic element is also configured to allow the free layer to be switched due to spin transfer effect when a write current is passed through the magnetic element. Because of the perpendicular magnetization(s), the writing current for spin transfer may be significantly reduced.
摘要:
A method and system for providing a magnetic memory is disclosed. The method and system include providing a plurality of magnetic elements and providing at least one stress-assist layer. Each of the plurality of magnetic elements is configured to be written using spin transfer. The at least one stress-assist layer is configured to exert at least one stress on at least one magnetic element of the plurality of magnetic elements during writing. The reduction of spin-transfer switching current is due to stress exerted by the stress-assist layer on the magnetic elements during writing. Stability of the magnetic memory with respect to thermal fluctuations is not compromised because the energy barrier between the two magnetization states is unchanged once the switching current is turned off.
摘要:
A magnetic head is fabricated by providing a substrate with a planar surface, forming at least one cavity in the planar substrate, depositing a second yoke layer in the cavity, forming a second pole tip in the cavity in contact with the second yoke layer, patterning an inductive coil in the cavity, depositing a gap layer over the second pole tip, sputtering a first pole tip over the gap layer, etching the first and second pole tips and the gap layer to form a stack of layers, depositing a protective layer over the stack of layers, leveling the protective layer to expose the first pole tip, and patterning a first yoke layer in contact with the first pole tip.
摘要:
A method and system for providing a magnetic element capable of being written using spin-transfer effect while generating a high output signal and a magnetic memory using the magnetic element are disclosed. The magnetic element includes a first ferromagnetic pinned layer, a nonmagnetic spacer layer, a ferromagnetic free layer, an insulating barrier layer and a second ferromagnetic pinned layer. The pinned layer has a magnetization pinned in a first direction. The nonmagnetic spacer layer is conductive and is between the first pinned layer and the free layer. The barrier layer resides between the free layer and the second pinned layer and is an insulator having a thickness allowing electron tunneling through the barrier layer. The second pinned layer has a magnetization pinned in a second direction. The magnetic element is configured to allow the magnetization of the free layer to change direction due to spin transfer when a write current is passed through the magnetic element.
摘要:
A storage element 3 has an arrangement in which magnetization fixed layers 31 and 32 are provided above and below a storage layer 17 for storing information based on the magnetization state of a magnetic material through intermediate layers 16 and 18, directions of magnetizations M15 and M19 of ferromagnetic layers 15 and 19 closest to the storage layer 17 of the magnetization fixed layers 31 and 32 above and below the storage layer 17 are opposite to each other, the two intermediate layers 16 and 18 above and below the storage layer 17 have a significant difference between sheet resistivity values thereof and in which the direction of a magnetization M1 of the storage layer 17 is changed with application of an electric current to the lamination layer direction to record information on the storage layer 17.