Abstract:
Foamed articles including a foamed thermoplastic elastomeric material, methods of making the foamed articles, and methods for manufacturing articles of footwear, apparel, and athletic equipment incorporating such foamed articles are provided. In one aspect, a method for making a foamed article comprises placing an article comprising a foamable material and carbon dioxide in a vessel, maintaining the vessel at a first pressure and first temperature at which the carbon dioxide is a liquid and carbon dioxide is soluble in the foamable material, optionally exposing the infused article to a second temperature and second pressure, and subjecting the article to a third pressure and third temperature at which the infused carbon dioxide phase transitions to a gas, thereby expanding the foamable material into a foamed material and forming the foamed article.
Abstract:
A method of curing a composite part, including placing an uncured composite part on a mandrel, placing a plurality of expandable pellets on the uncured composite part, expanding the plurality of expandable pellets, applying a positive pressure to the uncured composite part, and curing the uncured composite part.
Abstract:
A system for curing a composite part, includes a mandrel configured to receive and support the uncured composite part; a plurality of expandable pellets disposed on the uncured composite part; and a mold configured to hold the mandrel, the uncured composite part, and the plurality of expandable pellets, wherein the plurality of expandable pellets are configured to expand and apply a positive pressure to the uncured composite part according to a change in condition or triggering event, and wherein each of the plurality of expandable pellets includes a blowing agent, a polymer matrix configured to hold the blowing agent, and a flexible skin configured to encapsulate the polymer matrix and the blowing agent, wherein the flexible skin is at least partially permeable with respect to the blowing agent or a gas released by the blowing agent.
Abstract:
An engine component for a turbine engine is provided. The engine component can include a substrate defining a surface, and an energy absorbing composite positioned on the surface of the substrate or within the substrate. The energy absorbing composite includes a shear thickening fluid distributed through a solid foamed synthetic polymer matrix.
Abstract:
Polymer foam bodies are made from phosphorus-containing thermoplastic random copolymers of a dialkyl (meth)acryloyloxyalkyl phosph(on)ate. Foam bodies made from these copolymers exhibit increased limiting oxygen indices and surprisingly have good properties. In certain embodiments, the phosphorus-containing thermoplastic copolymer is blended with one or more other polymers and formed into nanofoams.
Abstract:
The present invention is directed to a deep draw microcellularly foamed polymeric container comprising a polymeric sidewall integrally connected to a polymeric base along a bottom edge. The polymeric sidewall and base are contiguous with each other and define a shape of an open top container. The polymeric sidewall and base have a contiguous inner microcellular foam structure (having average cell diameters ranging from about 5 to about 100 microns) surrounded by a smooth outer skin layer integrally connected therewith. The polymeric sidewall defines a container height and a top opening, wherein the top opening defines a top opening width, and wherein the polymeric base defines a container base width, and wherein the area defined by the top opening is greater than the area defined by the polymeric base, and wherein the ratio of the container height (h) to the top opening width (w) is greater than about 1:1 (h:w).