Abstract:
A drive rotation member is rotated about a given axis by a crankshaft of the engine, and a driven rotation member is rotated about the given axis together with a camshaft of the engine. A relative rotation angle control mechanism is arranged through which the drive and driven rotation members are coaxially connected. The relative rotation angle control mechanism has a movable control member which, when applied with an operation force from an actuation device, varies a relative rotation angle between the drive and driven rotation members. The actuation device comprises a first electromagnetic brake which applies an operation force to the movable control member to cause a rotation of the driven rotation member to be shifted in one of advancing and retarding directions with respect to a rotation of the drive rotation member, and a second electromagnetic brake which applies an operation force to the movable control member to cause the rotation of the driven rotation member to be shifted in the other of the advancing and retarding directions with respect to the rotation of the drive rotation member.
Abstract:
A relative rotation angle control mechanism of a valve timing control device comprises a radial guide provided by one of drive and driven rotation members which are rotatable about a given axis. A movable control member is guided by the radial guide in a manner to move in a radial direction with respect to the given axis. A link links the movable control member to a given portion of the other of the drive and driven members. The given portion is positioned away from the given axis in a radial direction. An intermediate rotation member is rotatable about the given axis relative to both the drive and driven rotation members. A spiral guide is provided by the intermediate rotation member to guide the movement of the movable control member, so that rotation of the intermediate rotation member relative to the radial guide induces a radial movement of the movable control member. A sliding resistance reducing structure is further arranged between the movable control member and the intermediate rotation member to reduce a sliding resistance produced when the movable control member is moved.
Abstract:
The device for adjusting the phase position of a shaft, especially a camshaft that can be rotated by a drive shaft, more particularly a crankshaft, by a transmission device with at least one transmission wheel, is configured as a rotary piston machine according to the orbit principle. The inventive device adjusts the rotary position of the transmission wheel in relation to the shaft. The rotary pistol machine includes a stator with inner teeth, an annular rotary piston with outer teeth that engage with the inner teeth of the stator, a driven part that can be rotated by the rotary piston and a valve that can be rotated by the rotary piston and a valve device. In order to control the movement of the rotary piston, the valve device enables rotating partial areas of the working area between the stator and the rotary piston to be joined to a fluid supply device at high or low pressure. The fluid supply device includes a control mechanism, a phase position detector and at least one control valve. It enables a theoretical phase position to be adjusted by actuating the valve in a corresponding manner. Fluidic connection to be adjustment device occurs by two angular rotational connections.
Abstract:
A valve timing control system includes; a rotor rotated by a crankshaft of the internal combustion engine; a camshaft rotated according to the rotation of the rotor to open and close an intake valve and an exhaust valve of the internal combustion engine; and a rotational phase controller for variably controlling a rotational phase of the camshaft relative to the rotor. The rotational phase controller is disposed between the rotor and the camshaft. The rotational phase controller includes; a clutch selectably put in one of a holding state for forbidding a relative rotation between the rotor and the camshaft in at least one of rotational directions and a releasing state for allowing the relative rotation; and a generator for generating a holding toque directing to the rotational direction forbidden by the clutch and applying the holding torque to the clutch when the clutch is put in the holding state.
Abstract:
The invention relates to an apparatus for adjusting a camshaft of an internal combustion engine with at least one electromotor which, by way of a gear, produces the adjustment of the camshaft with respect to a pinion, with the gear comprising a planet cage on which at least one planet wheel is provided which is driven by an electromotor. A rapid adjustment with a simple arrangement at the same time can be achieved in such a way that several planet wheels are provided which are in engagement with a ring gear and that each planet wheel is associated with an electromotor which drives the same via a common shaft.
Abstract:
An apparatus and method effects the cyclical actuation of an actuation member. The apparatus can be driven by a crankshaft and has at least one dual-acting phasing apparatus with at least three rotatable mounted internally splined members and at least a first rotatably mounted, externally splined, flexible member having a portion thereof rotatably disposed within each of at least two of the internally splined members. One inner splined member can be connected nonrotatably to a first rotatable member such as an inner shaft, which is rotatably disposed within an outer shaft of a concentric camshaft. Another internally splined member can be nonrotatably connected to the outer shaft. Yet another internally splined member can be nonrotatably connected to a pulley wheel driven by the crankshaft. A fourth internally splined member can be connected to one of the other three internally splined members. A second externally splined, flexible member can be disposed with a portion thereof rotatably disposed within each of at least two of either the three or four internally splined members. Various configurations of cam members and camlobe members can be disposed as integral portions of the inner shaft and the outer shaft. The cam members can be fixed or variable, full width cam members or splittable cam members. More than one concentric camshaft can be controlled by a single dual-acting phasing mechanism. More than one dual-acting phasing mechanism can be used to control two camshafts, concentric or conventional.
Abstract:
A valve timing control system for an internal combustion engine includes a hollow sprocket rotatably supported on a camshaft, and a rotary member housed within the sprocket and rigidly connected to the camshaft for rotation therewith. The rotary member has a pair of radially extending portions, on which a pair of gears are rotatably supported. The sprocket has an internal toothed circumference which is engageable with the gears to cause the gears to rotate in accordance with rotation of the sprocket for causing relative angular displacement of the rotary member to the sprocket. The valve timing control system further includes a pair of stopper pins for regulating relative angular displacement of the intermediate rotary member to the sprocket within a predetermined maximum range, and a clutch mechanism for restricting rotation of the gears. The clutch mechanism is controlled in accordance with a current engine running condition to be associated with the stopper pins for restricting relative angular displacement of the rotary member to the sprocket.
Abstract:
A modular control mechanism for shifting the phase of a camshaft relative to a crankshaft in an internal combustion engine, accomplished by shifting the angular position of the camshaft relative to the crankshaft. The mechanism comprising two hydraulic cylindrical housings attached to either the camshaft flange or the camshaft driving sprocket, and plungers within the cylindrical housings attached to the other flange to form a rotational hydraulic coupling. The hydraulic cylinders providing a pair of cavities which vary in displacement as the two flanges are rotated relative to one another. A control apparatus regulating the flow of fluid between the hydraulic cylindrical housings, thus controlling the phase shift between the crankshaft and camshaft. The control device using the energy produced by the reaction torque pulses on the camshaft, and resultant pressure pulses in the cavities, thus creating a self-actuating system. The control apparatus consisting of one of three alternate means for precisely controlling the flow of fluid, thus allowing for a modulated self-actuating mechanism.
Abstract:
An assembly capable of varying the relative phase of rotation between a driving sprocket wheel and a camshaft comprises a carrier fixed to the sprocket wheel and carrying compound idler bevel gears including inner idler gears which mesh with a bevel gear fixed to the camshaft to impart rotation to the camshaft and including outer idler gears which mesh with a ring gear carried by a sleeve shaft which is adjustable in angular position by a worm gear and a worm-wheel arrangement to vary the phase of the camshaft rotation relative to the phase of the sprocket wheel rotation.
Abstract:
A device is disclosed for controlling the respective phased rotation relative to one another of two rotating shafts. The device of the invention finds particular application with respect to automotive engines and sequential operations associated therewith. The rotational displacement, for example, of a cam shaft used to control the opening and closing of engine valves can be controlled with respect to the phasing of rotation of the crankshaft of an engine. The invention finds particular application with regard to a unique, cam actuated valve lifter. In addition, such functions as fuel injection, ignition timing and other sequential operations in an internal combustion engine can be controlled relative, for example, to the rotation crankshaft.