Abstract:
A robotic system that includes a remote controlled robot. The robot may include a camera, a monitor and a holonomic platform all attached to a robot housing. The robot may be controlled by a remote control station that also has a camera and a monitor. The remote control station may be linked to a base station that is wirelessly coupled to the robot. The cameras and monitors allow a care giver at the remote location to monitor and care for a patient through the robot. The holonomic platform allows the robot to move about a home or facility to locate and/or follow a patient.
Abstract:
A travelling track on which a plurality of movers travel is divided into sections of various lengths. A position/velocity calculator obtains the position and velocity of the movers in the sections, using the position and velocity of each mover having passed the boundary of the section in which the mover travels. A collision-chance determiner determines whether there is a great chance that each pair of neighboring movers will collide with each other, using the position and velocity obtained by the position/velocity calculator. An emergency stopper stops a pair of neighboring movers that the collision-chance determiner determined that they would collide with each other, in an emergency.
Abstract:
The method provides a better incorporation of a defined safety interval from obstacles in the route planning of a self-propelled mobile unit. By contrast to methods that were hitherto standard, a shell with equidistant spacing from a housing of the self-propelled mobile unit is not placed around the mobile unit; rather, the safety interval is calculated via the route at a drive wheel of the self-propelled mobile unit. That is, the kinematics of the self-propelled mobile unit are first used in the calculation of the safety interval from obstacles. The advantage is that better maneuverability is achieved between obstacles located close to one another.
Abstract:
A mobile robot remotely controlled and/or powered through a cable from a stationary console is provided. The robot carries a cable management arrangement which stores the cable and dispenses and retracts it as needed. The arrangement lays down the cable under zero tension when the robot is outbound and reels it in as the robot returns to allow the robot to follow a tortuous path without entangling the cable under or around obstacles. The robot can have numerous configurations such as a simple configuration for use as a transporter for mail in an office and parts in a factory, to a complex configuration with robotic arms and sensors for use in remote surveillance and security work. The robot is especially usable in hostile environments such as nuclear power plants and has a containment box permitting it to be moved to numerous locations without contaminating other areas.
Abstract:
An information processing method of an information processor includes: obtaining information received from a mobile body through a wireless communication, the mobile body including a movement mechanism and an imaging unit configured to capture image data, the information received from the mobile body including captured image data obtained by the imaging unit, with the captured image data being updated periodically; and generating route guidance information for use in moving the mobile body by the movement mechanism. The captured image data is stored together with data update time information. The route guidance information includes at least two selectable routes. The route guidance information is generated based on the captured image data, position information of the mobile body, and the data update time information.
Abstract:
Lighting control systems may be commissioned for programming and/or control with the aid of an autonomous mobile device. Design software may be used to create a floor plan of how the lighting control system may be designed. The design software may generate floor plan identifiers for each lighting fixture, or group of lighting fixtures. During commissioning of the lighting control system, the autonomous mobile device may be used to help identify the lighting devices that have been installed in the physical space. The autonomous mobile device may receive a communication from each lighting control device that indicates a unique identifier of the lighting control device. The unique identifier may be communicated by visible light communication (VLC) or RF communication. The unique identifier may be associated with the floor plan identifier for communication of digital messages to lighting fixtures installed in the locations indicated in the floor plan identifier.
Abstract:
The information processing device 1D mainly includes a state-of-activity estimation unit 31D and a timing determination unit 32D. The state-of-activity estimation unit 31D estimates, based on information detected in a meeting room in which a meeting is being held, a state of activity of the meeting. The timing determination unit 32D determines a timing of mobile sales of a commodity to one or more participants of the meeting based on the state of activity estimated by the state-of-activity estimating unit 31D.
Abstract:
An autonomous mobile robot includes a target acquisition unit which acquires a target by using an image obtained by an imaging unit whose field of view is able to be changed, a target movement prediction unit which predicts the destination of the target by using the image of the target, an obstacle movement prediction unit which predicts the destination of an obstacle by using an image of the obstacle, an occlusion determination unit which determines whether or not the target is occluded by the obstacle from result of the prediction by the target movement prediction unit and result of the prediction by the obstacle movement prediction unit, and a target tracking unit which changes the field of view of the imaging unit so that the area of the target coming into the field of view increases in the case where it is determined that at least a part of the target is occluded by the obstacle.
Abstract:
A robotic system that includes a robot and a remote station. The remote station can generate control commands that are transmitted to the robot through a broadband network. The control commands can be interpreted by the robot to induce action such as robot movement or focusing a robot camera. The robot can generate reporting commands that are transmitted to the remote station through the broadband network. The reporting commands can provide positional feedback or system reports on the robot.
Abstract:
An operation management system includes: a plurality of robots; and an operation management unit server configured to manage an operation route in a predetermined region. Each robot has a sensor that recognizes a surrounding environment. When the sensor of a first robot recognizes a predetermined surrounding environment, the server refers to a position of the surrounding environment and sets an operation route of a second robot.