Abstract:
A film image input system is disclosed which can use a film cartridge constructed in such a manner that it requires a small space for storing a developed still photo film and also can protect the film against dust and damage, and also which allows the film cartridge to be mounted into a cartridge mounting part very simply and positively. The film image input system 1 is arranged such that it reproduces the image of the developed still photo film 2 on a video monitor 18. The system uses a film cartridge 6 which comprises a cartridge main body having an outlet opening 7 for sending out the film 2 in the longitudinal direction thereof, a single spool which fixes one end of the film 2 in the longitudinal direction thereof and round which the whole length of the film 2 can be wound, and support means for supporting the spool in such a manner that it can be rotated in both directions. The film image input system includes film supply means 13 which is engageable with the spool of the film cartridge 6 to rotationally drive the spool in a direction to send out the film 2 from the cartridge main body and in a direction to rewind the film back into the cartridge main body. Due to this, the film image can be reproduced by one touch on the video monitor 18.
Abstract:
A photosensitive material which when imagewise exposed to record a latent image thereon is formed with an image by heating with a prescribed processing material superimposed thereon is used as a photographic film or the like, the photosensitive material is exposed to record an image thereon, the exposed photosensitive material is developed by superimposing and heating the photosensitive material and the processing material to form the image on the photosensitive material and then peeling the photosensitive material formed with the image off the processing material, the developed image on the photosensitive material is read with a scanner to obtain image data representing the image, and the image data are subjected to prescribed image processing to generate reproducible digital image data.
Abstract:
A method and apparatus for providing localized control of film, allowing high speed and high resolution continuous digital scanning of the film. The method includes continuously and precisely transporting the film, capturing successive slit images, and storing the images. The apparatus includes the use of a drive system to control the transport of the media being scanned. In a preferred embodiment, a dual capstan drive system under the control of a single motor provides localized tension and location control for the continuous transport of the film to be scanned, the capstans comprising a metal shaft. The preferred embodiment further comprises pinch rollers immediately adjacent to the capstans, the pinch rollers comprising a metal shaft covered with an elastomeric material. As a result of the accurate localized control of the film, high speed scanning is possible.
Abstract:
A film gate for transporting an elongated film therethrough, comprising:two spaced apart arcuate guide surfaces to engage against opposed edge margins of the film;a drive roller assembly, an idler roller assembly, and two elastic belts engaged around them to lie along respective arcuate surfaces from an entrance position, to an exit position defined by a nip between the drive roller assembly and the guide surfaces, so that upon rotation of the drive roller assembly opposite edge portions of the film can be transported in engagement between the belts and the arcuate guide surfaces from the entrance to exit positions. A scanner using such a film gate, and a method of scanning film using such a scanner, are also provided.
Abstract:
A photographic system includes a photographic camera that can successively expose a photographic film and an automatic printer for automatically printing the exposed and processed photographic film. The photographic camera magnetically or optically records at an area away from an exposure area of the photographic film an aspect ratio information signal indicative of a selected aspect ratio and a frame number signal, and the automatic printer automatically produces prints from the photographic film using the magnetically or optically recorded aspect ratio information signal and frame number signal detected from the photographic film.
Abstract:
An object of this invention is to provide an original carrier and an image reader capable of performing a focusing operation every original carrier.To achieve this object, a slit hole 32 extending in a direction perpendicular to a film conveying direction is formed in a width enlarging portion of a film conveying path 34. Focusing charts 58 are formed on faces of a glass plate 38 fitted into the slit hole 32 on sides of the film conveying path 34 in both end portions of the glass plate 38 in its longitudinal direction. When light from a light source is transmitted through the focusing charts 58 of the glass plate 38 and is incident to a line CCD, focusing control is performed by a microprocessor so as to maximize the contrast of an image of each of the focusing charts 58. The focusing control can be also performed so as to maximize the contrast of an image of a photographic film 22.
Abstract:
A photographic and video image system for transforming an image on a frame of a photographic film includes a structure in the overall form of a photographic printer having an image transformation element that transforms an optical image from the film into a video signal, a frame position indicator, which can be a hole or an optical or magnetic signal, is recorded on the film along with aspect information relating to the size of the frame exposed on the film. The frame position indicator and aspect information are detected and used to control a film feeding operation and the optical image to video signal transformation operation. The user of the system can record order information on the film that is used to specify the aspect of the resultant photographic print, as well as the quantity of prints to be made. Such order information can be superimposed as a menu on a displayed video signal at the time the video signal is reviewed prior to producing a photographic print.
Abstract:
A photographic film scanner for scanning a film strip containing a plurality of photographic images. The film strip is continuously advanced through the scanner and a digital image of the film strip is created. Individual images contained in the digital image of the film strip are located and displayed.
Abstract:
An inventive system and method for continually advancing film through an air-bearing film flattening system having at least one scanning area through which the air-flattened film may be scanned. The film is provided to an air-bearing mechanism comprising two opposing air-bearing plates which create opposing air cushions for maintaining the planarity of the film. The scanning area may comprise at least one optical aperture in the air-bearing plate or plates through which the scanner views the film, or a "viewing" area occupied by bundled coherent optical fibers which sequentially pick up image information from aligned regions of the image. The system provides for time efficient, clean, and error-free reading of the scanned image.
Abstract:
An improved image input apparatus 1 prevents foreign particles from attaching onto image reading areas of transparency media contained within the apparatus by providing feeding block structure 13 that substantially covers an area between a loading cartridge 11 and a take-up housing 15, except for a small slit-shaped window 13a formed in block 13 in a direction intersecting a direction of movement of the media through the block. The window 13a preferably has a sloping part 13d inclined toward a light axis L1 of an illumination system 12 that passes through the transparency media. The feeding block 13 may also be provided with a pressing member 13b that acts with rails 13c to press on the transparency media and prevent curling.