Abstract:
Efficient methods are disclosed for the high throughput identification of mutations in genes in members of mutagenized populations. The methods comprise DNA isolation, pooling, amplification, creation of libraries, high throughput sequencing of libraries, preferably by sequencing-by-synthesis technologies, identification of mutations and identification of the member of the population carrying the mutation and identification of the mutation.
Abstract:
The current invention relates to a method for targeted alteration of acceptor DNA, for example duplex acceptor DNA. The method comprises use of at least two oligonucleotides, each oligonucleotide having at least one mismatch relative to the targeted (duplex) acceptor DNA. The mismatch of the first oligonucleotide is directed to a nucleotide at a position in the first strand of the duplex and the mismatch of the second oligonucleotide is directed to the nucleotide in the second strand that occupies the complementary position in the duplex acceptor DNA (e.g. forms a base-pair with the nucleotide in the first strand). These mismatches are located at specific positions within said oligonucleotides. Also provided is a kit that comprises instructions for performing the method according to the inventions, and in a preferred embodiment, comprises oligonucleotides suitable for use in the method.
Abstract:
The invention relates to a method for the high throughput identification of single nucleotide polymorphisms by performing a complexity reduction on two or more samples to yield two or more libraries, sequencing at least part of the libraries, aligning the identified sequences and determining any putative single nucleotide polymorphisms, confirming any putative single nucleotide polymorphism, generating detection probes for the confirmed single nucleotide polymorphisms, subjection a test sample to the same complexity reduction to provide a test library and screen the test library for the presence or absence of the single nucleotide polymorphisms using the detection probe.
Abstract:
The invention relates to a method for the high throughput discovery, detection and genotyping of one or more genetic markers in one or more samples, comprising the steps of restriction endonuclease digest of DNA, adaptor-ligation, optional pre-amplification, selective amplification, pooling of the amplified products, sequencing the libraries with sufficient redundancy, clustering followed by identification of the genetic markers within the library and/or between libraries and determination of (co-)dominant genotypes of the genetic markers.
Abstract:
The invention relates to a method for the determination of a genome sequence comprising the steps of providing a physical map of a sample genome by sequencing fragment ends of pooled BAC clones; providing a set of sequence reads from a sample genome generating a contig of the physical map and the sequence reads.
Abstract:
Trichome specific plant promoters are provided herein. Also provided are transgenic cells and organisms, especially plant cell and plants, comprising such trichome-specific promoter or a chimeric or vector comprising such trichome-specific promoter. The invention further provides methods for expressing nucleic acid sequences in cells and organisms using trichome specific promoters.
Abstract:
The present invention relates to a high throughput method for the identification and detection of molecular markers wherein restriction fragments are generated and suitable adaptors comprising (sample-specific) identifiers are ligated. The adapter-ligated restriction fragments may be selectively amplified with adaptor compatible primers carrying selective nucleotides at their 3′ end. The amplified adapter-ligated restriction fragments are, at least partly, sequenced using high throughput sequencing methods and the sequence parts of the restriction fragments together with the sample-specific identifiers serve as molecular markers.
Abstract:
The present invention relates to nucleic acids sequences derived from Valeriana officinalis and/or Persicaria hydropiper and encoding drimenol synthase polypeptides. The present invention also provides the amino acid sequences of the polypeptides. The invention further provides host cells or organisms genetically modified to harbour the polynucleotides of the invention. A method to produce drimenol and/or a drimenol derivative by contacting farnesyl diphosphate with a polypeptide having a drimenol synthase activity is also part of this invention.
Abstract:
The invention relates to a method for the high throughput discovery, detection and genotyping of one or more genetic markers in one or more samples, comprising the steps of restriction endonuclease digest of DNA, adaptor-ligation, optional pre-amplification, selective amplification, pooling of the amplified products, sequencing the libraries with sufficient redundancy, clustering followed by identification of the genetic markers within the library and/or between libraries and determination of (co-)dominant genotypes of the genetic markers.
Abstract:
The invention relates to a method for the high throughput identification of single nucleotide polymorphisms by performing a complexity reduction on two or more samples to yield two or more libraries, sequencing at least part of the libraries, aligning the identified sequences and determining any putative single nucleotide polymorphisms, confirming any putative single nucleotide polymorphism, generating detection probes for the confirmed single nucleotide polymorphisms, subjection a test sample to the same complexity reduction to provide a test library and screen the test library for the presence or absence of the single nucleotide polymorphisms using the detection probe.