Abstract:
A method of transmitting, by a transmitter, information in a wireless communication system, the method includes generating first and second symbols; generating first and second transmit vectors on the basis of an Alamouti code from the first and second symbols; and transmitting the first transmit vector through a first antenna and transmitting the second transmit vector through a second antenna. The first transmit vector consists of a first transmit symbol and a second transmit symbol. The second transmit vector consists of a third transmit symbol and a fourth transmit symbol. The first, second, third, and fourth transmit symbols are transmitted based on first and second resource indexes. The first symbol is a first modulation symbol for first information, and the second symbol is a second modulation symbol for second information.
Abstract:
A method of generating a code sequence and method of adding additional information using the same are disclosed, by which a code sequence usable for a channel for synchronization is generated and by which a synchronization channel is established using the generated sequence. The present invention, in which the additional information is added to a cell common sequence for time synchronization and frequency synchronization, includes the steps of generating the sequence repeated in time domain as many as a specific count, masking the sequence using a code corresponding to the additional information to be added, and transmitting a signal including the masked sequence to a receiving end.
Abstract:
A method and apparatus for transmitting or detecting primary synchronization signal. The receiver receives primary synchronization signal from a transmitter, and detects the sequence used in the received primary synchronization signal by using three root indexes. Here, the primary synchronization signal is generated by using a Zadoff-Chu sequence having one of the three root indexes. The three root indexes comprise a first index and a second index, and a sum of the first index and the second index corresponds to the length of the Zadoff-Chu sequence.
Abstract:
Disclosed are a method and a device for transmitting uplink control information (UCI) by a terminal in a wireless communication system. The UCI transmission method comprises the steps of: generating an encoding information bit stream by performing channel coding for a UCI bit stream; generating complex modulation symbols by performing modulation for the generated encoding information bit stream; spreading the complex modulation symbols in block-wise on the basis of an orthogonal sequence; and transmitting the spread complex modulation symbols to a base station. The encoding information bit stream is generated by a channel coding for circularly repeating the UCI bit stream.
Abstract:
The present invention relates to a method for determining position of a user equipment in a wireless mobile communication system. The method comprises receiving a plurality of subframes including reference signals for positioning of the user equipment from a plurality of base stations periodically with a predetermined period of time; and determining position of the user equipment using reference signal time difference (RSTD) between the reference signals for positioning of the user equipment included in the received plurality of subframes, wherein a pattern of the reference signals for positioning of the user equipment is generated by repeating a diagonal mother matrix with dimension of 6×6, the pattern of the reference signals are mapped to orthogonal frequency division multiplexing (OFDM) symbols of the subframe, and the reference signals for positioning of the user equipment in a OFDM symbol in which common reference signal (CRS) is transmitted are punctured.
Abstract:
A method is provided for transmitting control information from a user equipment in a wireless communication system. Physical downlink shared channels (PDSCHs) are received on a primary cell and a secondary cell configured for the user equipment. Acknowledgement (ACK)/negative acknowledgement (NACK) feedbacks for the received PDSCHs are transmitted using two physical uplink control channel (PUCCH) resources corresponding to a respective one of two antenna ports configured for the user equipment. The two PUCCH resources are used to transmit the same ACK/NACK state.
Abstract:
The present invention relates to a wireless communication system, and more specifically, to a method and an apparatus for transmitting an RS (Reference Signal) from a transmission end. The present invention relates to an RS transmission method and an apparatus therefore, comprising the steps of: confirming RS resources which are defined according to each layer; and transmitting the precoded RS for the layers to a receiving end through a multiple antenna, wherein the RS resource includes a 1st index for indicating an RS resource pattern group in which the precoded RS is mapped within a resource block and a 2nd index for indicating a code resource for multiplexing the precoded RSs within the RS resource pattern group.
Abstract:
A method for performing a random access procedure by a Node-B with a specific user equipment (UE) within a cell in which a plurality of UEs are located together. System information is transmitted for at least one of a basic sequence index and a length of a zero correlation zone (ZCZ) to the specific UE. A preamble sequence is received from the specific UE over a random access channel. The preamble sequence is generated from Constant Amplitude Zero Auto-Correlation (CAZAC) sequences distinguishable by at least one of the basic sequence index and a length of a Cyclic Shift (CS) applied to the preamble sequence. The length of the CS applied to the preamble sequence is given by one among a plurality of application lengths determined based on the length of the ZCZ. A number of the plurality of lengths are differently given based on a type of the specific UE.
Abstract:
An apparatus for receiving signals includes a receiver for receiving a time domain signal from a transmitter, wherein at least one first information bit is mapped, resulting in at least one first mapped symbol; at least one second information bit is mapped, resulting in at least one second mapped symbol; the at least one second mapped symbol is multiplied by at least one third information bit; and the time domain signal is generated from the at least one first mapped symbol and the at least one second mapped symbol.
Abstract:
A method is described for receiving a physical signal by a communication apparatus in a wireless communication system supporting carrier aggregation of a first component carrier and a second component carrier. The communication apparatus receives a physical downlink control channel (PDCCH) signal on the first component carrier. The communication apparatus also receives a physical downlink shared channel (PDSCH) signal corresponding to the PDCCH signal on the second component carrier. The first component carrier is different from the second component carrier. A starting orthogonal frequency division multiplexing (OFDM) symbol for receiving the PDSCH signal is determined according to information received via a radio resource control (RRC) signal.