Abstract:
Methods, systems, computer-readable media, and apparatuses for integration of an outdoor map and an indoor map associated with a venue using a mobile device are presented. The method may comprise presenting the outdoor map associated with an outdoor map application, wherein the outdoor map includes an area associated with the venue. Additionally, the method may comprise overlaying the indoor map on the area of the outdoor map associated with the venue, wherein the indoor map is associated with an indoor map application. Furthermore, the method may comprise receiving a first indication of a first event associated with the venue. Moreover, in response to receiving the first indication of the first event, the method may comprise allowing the indoor map application to control an aspect associated with the presentation of the outdoor map with the overlaid indoor map.
Abstract:
Various methods, apparatuses and articles of manufacture are provided for use by one or more electronic devices to detect and/or respond to certain changes (anomalies) within a wireless signaling environment. For example, a first electronic device may receive a report of a threshold anomaly detected by a monitoring device deployed at a fixed predetermined position within a coverage area of a network service device, and may initiate an investigation by requesting that a second electronic device attempt to monitor certain transmissions of and/or actively communicate with a network service device. In response to a determination based, at least in part, on the investigation that the threshold anomaly represents a threshold change in status within the wireless signaling environment, the first electronic device may transmit a status report regarding the wireless signaling environment to another electronic device.
Abstract:
Methods, systems, computer-readable media, and apparatuses for labeling crowd sourced data are presented. In some embodiments, a method for labeling crowd sourced data may include: receiving an atmospheric pressure signal from a mobile device associated with a venue, the mobile device comprising an atmospheric pressure sensor; clustering a plurality of atmospheric pressure signals from a plurality of mobile devices associated with the venue into a plurality of clusters; assigning a label to each of the plurality of clusters; receiving signal measurements from one or more of the plurality of mobile devices; and applying the label to the signal measurement.
Abstract:
Various methods, apparatuses and/or articles of manufacture are provided which may be implemented by one or more electronic devices to identify potential anomalies in one or more electronic files used to support mobile device positioning within a specific environment. Various methods, apparatuses and/or articles of manufacture are also provided which may be implemented by one or more electronic devices to alter one or more electronic files used to support mobile device positioning within a specific environment.
Abstract:
Methods, apparatuses, and devices for rendering indoor maps on a display device of, for example, a mobile device, are presented. In one example, a processor of a mobile device may receive identifiers, such as alphanumeric identifiers, for points of interest (POI) and map at least portions of the identifiers to colors within a suitable color space, such as a RGB color space.
Abstract:
A computer-implemented method for detecting a boundary of a building from an indoor map includes providing an electronic raster image of the indoor map. A floor plan included in the map is a first color and a background of the image is a second color. The method includes scanning the image a first time in a plurality of directions and coloring pixels of the image a third color as they are scanned the first time until a pixel is detected that is not the second color. Then the image is scanned a second time in at least two directions. The second scan includes marking a pixel a fourth color for each third color to non-third color and each non-third color to third color transition. The resultant pixels of the fourth color represent the boundary of the building.
Abstract:
Various embodiments include systems and methods of determining whether media access control (MAC) address spoofing is present in a network by a wireless communication device. A processor of the wireless communication device may determine an anticipated coherence interval based on a beacon frame received from an access point. The processor may schedule an active scan request and may determine whether a response frame corresponding to the scheduled active request is received within the anticipated coherence interval. The processor may calculate a first correlation coefficient in response to the response frame being received within the anticipated coherence interval and may determine that MAC address spoofing is not present in the network when the first correlation coefficient is greater than a first predetermined threshold.
Abstract:
Methods and systems for providing information associated with a location history of a mobile device to one or more applications are disclosed. A mobile device generates one or more location history records based on one or more locations of the mobile device, each location history record comprising one or more points of interest and a duration at the one or more points of interest, receives an information request from at least one application, determines a subset of the one or more location history records that meet criteria from the information request, determines a level of permission for the at least one application based on the information request and the subset of the one or more location history records, and provides information associated with the subset of the one or more location history records to the at least one application based on the level of permission.
Abstract:
Various embodiments include methods, and computing devices implementing the methods, for analyzing sensor information to identify an abnormal vehicle behavior. A computing device may monitor sensors (e.g., a closely-integrated vehicle sensor, a loosely-integrated vehicle sensor, a non-vehicle sensor, etc.) in the vehicle to collect the sensor information, analyze the collected sensor information to generate an analysis result, and use the generated analysis result to determine whether a behavior of the vehicle is abnormal. The computing device may also generate a communication message in response to determining that the behavior of the vehicle is abnormal, and send the generated communication message to an external entity.
Abstract:
Techniques for providing a user with an augmented virtuality (AV) experience are described herein. An example of a method of providing an AV experience includes determining a location of a mobile device, determining a context based on the location, obtaining AV object information, displaying the AV object information in relation to the context, detecting an interaction with the context, modifying the AV object information based on the interaction, and displaying the modified AV object information. The context may include weighting information. The weighting information may be based on Received Signal Strength Indication (RSSI) or Round-Trip Time (RTT) data. The weighting information may be associated with a composition of a physical object in the context. A user gesture may be received, and the AV object information may be modified based on the received gesture information.