摘要:
A prismatic secondary battery includes a prismatic hollow outer body having a mouth and a bottom; a flat electrode assembly, a positive electrode collector, a negative electrode collector, and an electrolyte, all of which are stored in the prismatic outer body; a sealing plate sealing up the mouth of the prismatic outer body; and a positive electrode terminal attached to the sealing plate in an electrically insulated manner. The sealing plate includes a gas release valve and an electrolyte pour hole and further includes, on the front face, a concaved flat face having an identification code. With the prismatic secondary battery of the invention, a jig for assembly or the like is unlikely to come into contact with the identification code during an assembly process of the prismatic secondary battery, hence the identification code is unlikely to be abraded, and the traceability is unlikely to be lost.
摘要:
A prismatic secondary battery includes a prismatic hollow outer body having a mouth and a bottom and storing an electrode assembly, a positive electrode collector, a negative electrode collector, and an electrolyte, a sealing plate sealing up the mouth of the prismatic hollow outer body, and a positive electrode terminal and a negative electrode terminal attached to the sealing plate; the sealing plate includes a gas release valve at the center between the positive electrode terminal and the negative electrode terminal and includes an electrolyte pour hole on one side of the gas release valve and, on the other side on the front face, a concaved flat face with a height lower than that of the peripheral portion; and the concaved flat face is formed with an identification code.
摘要:
A sealing plate for a prismatic secondary battery includes a pair of mouths for attaching a negative and positive electrode terminals, one mouth being formed near one end in a longitudinal direction of the sealing plate, and the other mouth being formed near the other end, coining areas used for positioning of an insulating member and formed around the pair of mouths on a front face of the sealing plate, a gas release valve and an electrolyte pour hole formed between the pair of mouths, and grooves formed between the respective coining areas and the long side edge of the sealing plate. The groove has a smaller depth near the gas release valve than the depth near the coining area. Even when the sealing plate is produced through forging, the front face has good flatness and the coining areas are unlikely to have a sink mark or a shear drop.
摘要:
A method for producing a secondary cell having a flat wound electrode body that inhibits the bending of the electrode board caused by charging and discharging and inhibits resulting swelling of the cell and deterioration of cycle characteristics is provided. The method has the steps of: winding, with a winding core, a positive electrode board, a negative electrode board, and a separator provided between the positive and negative electrode boards, and fixing the winding end, thereby preparing an approximately cylindrical electrode body; after the step of preparing the electrode body, deforming the electrode body into a shape with an approximately oval cross section by pressing the approximately cylindrical electrode body from a direction perpendicular to the winding axis, and rotating the deformed electrode body in the winding direction, thereby relaxing the winding state; and after the relaxation steps, pressing the electrode body into the flat wound electrode body.
摘要:
A first aim of the present invention is to provide a PDP capable of stably delivering favorable image display performance and being driven with low power, by improving the surface layer to improve secondary electron emission characteristics and charge retention characteristics. A second aim of the present invention is to provide a PDP, in addition to having the above-mentioned effects, capable of reducing an aging time. In order to achieve these aims, a crystalline film of a film thickness of approximately 1 μm is disposed as a surface layer (protective film) 8 on a surface of the dielectric layer 7 that faces a discharge space. The surface layer 8 is made by adding Sr to CeO2, and a concentration of Sr in the surface layer 8 is in a range of 11.8 mol % to 49.4 mol % inclusive. With this structure, an attempt is made to improve the secondary electron emission characteristics and aging characteristics in the surface layer 8.
摘要:
A first aim of the present invention is to provide a PDP capable of stably delivering favorable image display performance and being driven with low power, by improving the surface layer to improve secondary electron emission characteristics and charge retention characteristics. A second aim of the present invention is to provide a PDP capable of displaying high-definition images even when the PDP is driven at high speed by preventing the discharge delay during driving. In order to achieve these aims, the surface layer (protective film) 8 of a film thickness of approximately 1 μm is disposed on a surface of the dielectric layer 7 that faces a discharge space 15. The surface layer 8 includes CeO2 as the main component and Ba, and a concentration of Ba in the surface layer 8 is in a range of 16 mol % to 29 mol % inclusive. With this structure, an electron level having a certain depth is introduced in a forbidden band in the surface layer 8, or an electron level of a valence band is elevated to narrow a band gap. An attempt is made to improve secondary electron emission characteristics and charge retention characteristics in this manner.
摘要:
The prismatic cell of the present invention includes a rectangular outer can having a mouth portion at the top, a sealing plate that seals the mouth portion, and a positive terminal and a negative terminal that protrude from the sealing plate in a state of insulation from the sealing plate, the side faces and bottom faces of the rectangular outer can being covered by a bottomed rectangular tubular holder made of rubber. Thereby, it is possible to provide with ease a packed battery in which short-circuiting between the interconnected prismatic cells can be more reliably prevented, and to provide a prismatic cell which is optimal for use in the battery of an electric vehicle (EV), a hybrid electric vehicle (HEV), or the like.
摘要:
A method for producing a secondary cell having a flat wound electrode body that inhibits the bending of the electrode board caused by charging and discharging and inhibits resulting swelling of the cell and deterioration of cycle characteristics is provided. The method has the steps of: winding, with a winding core, a positive electrode board, a negative electrode board, and a separator provided between the positive and negative electrode boards, and fixing the winding end, thereby preparing an approximately cylindrical electrode body; after the step of preparing the electrode body, deforming the electrode body into a shape with an approximately oval cross section by pressing the approximately cylindrical electrode body from a direction perpendicular to the winding axis, and rotating the deformed electrode body in the winding direction, thereby relaxing the winding state; and after the relaxation steps, pressing the electrode body into the flat wound electrode body.
摘要:
A negative electrode terminal 19 and a positive electrode terminal 18 of a prismatic secondary battery 12 of the present invention are provided with terminal plates 20A and 20B, respectively, that are electrically connected to a negative electrode plate and a positive electrode plate, respectively, and with insulating materials 21A and 21B, respectively, that electrically insulate the terminal plates 20A and 20B, respectively, from a sealing plate 17. The insulating materials 21A and 21B are provided with connecting portions 24A and 24B, respectively, that are formed with connection contact portions composed of recessed portions 27 and protruding portions 31, respectively, having shapes complementary with each other. According to the prismatic battery 12 of the invention, any number of the batteries can easily be connected without a mistake in polarity to obtain a modularized battery.