Abstract:
A low-pass filter transmission line with an integral electro-absorption modulator is described. In one aspect, the electro-absorption modulator functions as an element of a distributed low-pass filter transmission line circuit that is impedance-matched to a target source impedance. In this way, the electrical voltage that is delivered across the electro-absorption modulator may be optimized because the electrical losses do not occur in the low-pass filter transmission line circuit, but rather substantially all incident power is absorbed in a downstream matched termination load. In another aspect, the electro-absorption modulator has a signal electrode with a segmented traveling wave structure that provides substantially the same modulation performance as a similar un-segmented signal electrode of comparable effective length, but is characterized by a substantially higher bandwidth.
Abstract:
An optical module, which is arranged in an optical transmission path, includes an optical amplifying unit configured with a semiconductor, wherein the optical amplifying unit amplifies light input from the optical transmission path, and an optical element configured with a semiconductor, wherein the optical element propagates the light amplified by the optical amplifying unit to the optical transmission path.
Abstract:
In a method of fabricating a traveling wave optical modulator, an optical waveguide structure having an optical waveguide and a signal electrode path extending from a signal input to a termination output is formed. The signal electrode path is modified to include a customized signal electrode having a transmission line characteristic substantially matching a target transmission line parameter value. In another aspect, a traveling wave optical waveguide structure includes an optical waveguide and a signal electrode path. The signal electrode path extends from a signal input to a termination output and is defined by an electrode seed structure. The electrode seed structure is exposed for subsequent electrode formation and has a transmission line characteristic detrimental to proper propagation of an electrical modulation signal.
Abstract:
A directional coupler type optical modulator with traveling-wave electrodes includes a first directional coupler region, a waveguide wave coupling region, a second directional coupler region, and a set of noncrossing traveling-wave electrodes disposed along the outside of the waveguides. The electrodes of each directional coupler are connected to the traveling-wave electrodes via air-bridges. The waveguide structures are of the P-I-N type having a common N-type conducting layer which provides delta-beta operation of the directional coupler, and both cross and bar states are controlled by a single input signal.
Abstract:
An electro-optical device capable of modulating the amplitude or phase of an optical output in response to an electrical data or control signal, or of switching it, has reduced frequency-dependence and a better combination of operating voltage and bandwidth. It comprises a body of electro-optically active material, waveguides for passing light through the body, and electrodes for applying an electric field with a frequency in the microwave region to the body, and its transverse geometry is such as to maintain adequate phase velocity matching between optical and microwave frequencies. There is a discontinuity in either the body or at least one of the electrodes such that the direction of the electro-optic effect is reversed for a portion of the length of the device at or near its downstream end. The result of such a discontinuity (in combination with phase velocity matching) is that the device operates in three successive zones: in the upstream zone, desirable phase change is induced for all frequencies in the bandwidth of the device; in the middle zone, desirable phase change is induced for frequencies in the upper part of the bandwidth, but phase change in the lower frequencies becomes excessive; while in the downstream zone, there is no significant phase change in the higher frequencies but the excess change at lower frequencies is reversed.
Abstract:
According to the present invention, a travelling-wave electroabsorption modulator (TW-EAM) comprises: an optical waveguide with a plurality of adjacent regions electrically isolated from each other, the regions being characterized alternately by the properties of electroabsorption (EA) and optical transparency over the same range of optical wavelengths, and a microwave transmission line located above the optical waveguide, such that sections of the transmission line located above EA regions in the optical waveguide are in electrical contact with said EA regions, whereas sections of the transmission line located above transparent regions in the optical waveguide are electrically isolated from said transparent regions. In the absence of a microwave signal, the EA regions are substantially transparent to light in the optical waveguide. When a microwave signal is applied to the EA regions, they become substantially absorbing at the wavelength of the light in the optical waveguide. Thus, by applying a fast time-varying microwave signal to the transmission line, the absorption of light in the waveguide can be modulated temporally, thereby encoding information onto the light beam.
Abstract:
An optical modulator electrode structure includes a drive signal electrode having a coplanar section that is coplanar with at least one ground electrode. The drive signal electrode also includes a fin section and a wall section connecting the fin section to the coplanar section. The fin section overlaps at least a portion of a ground electrode and dielectric material is located between the fin section and the underlying ground electrode. The electrode structure transmits electromagnetic energy in two modes: a coplanar waveguide mode and a microstrip mode. The electrodes may be formed on an optical waveguide substrate, such as lithium niobate, or on a dielectric layer overlying the optical waveguide substrate. In a typical optical modulator application, the electrode structure should (or is believed to) exhibit less conductor losses and facilitates better velocity matching.
Abstract:
An optical modulator includes a substrate having an electrooptic effect, an optical waveguide formed on a surface of the substrate, and a control electrode formed on the substrate, and a control electrode formed on the substrate to oppose the optical waveguide. In this optical modulator, the control electrode is formed by stacking a plurality of layers in a direction perpendicular to the substrate surface.
Abstract:
An optical modulator including a substrate made of lithium niobate having an electrooptical effect, first and second optical waveguides formed in the substrate by effecting a thermal diffusion of titanium into a surface of the substrate, a buffer layer formed on the surface of the substrate, a hot electrode provided on the buffer layer and having a width W.sub.e not larger than a width W.sub.f of the optical waveguide, first and second ground electrodes provided on the buffer layer such that these ground electrodes are symmetrical with respect to the hot electrode, and an electric field adjusting region having a width not smaller than that of the hot electrode is provided between the buffer layer and the hot electrode. First and second ground side electric field adjusting main- and sub-regions may be provided between the buffer layer and the first and second ground electrodes, respectively. An interaction between an electric field generated by applied microwave and lightwave propagating along the optical waveguides can be enhanced, and thus a driving voltage can be decreased.
Abstract:
At least one waveguide 2,3,4 are formed on a crystal substrate 1 having an electro-optical effect. A buffer layer 5 (with a dielectric constant of 1.1 to 40) is formed on the waveguide. Lower CPW electrode structures 6,7 are formed on the buffer layer. Intermediate electrode structures 8,9 are formed thereon and additional electrode structure 10 is formed on the intermediate signal electrode 8.