Abstract:
An audio signal processing system where an input audio signal is processed with a suitable sound spectrum to form an audio output signal for outputting via a loudspeaker or other means. The audio signal processing system may include a sound spectrum selection module capable of automatically selecting a sound spectrum from a plurality of different sound spectra suitable for processing the input audio signal and changing that sound spectrum whenever there is a change in the source of the input audio signal.
Abstract:
A method for recording information that is transmitted over a radio frequency, especially traffic information, in which, in a monitoring state, the receiving device is supplied with power in a clocked manner. While switched on, the receiving device is tuned to a preestablished radio frequency and the received radio frequency is monitored for the presence of an identifier designating information. In the event an information identifier is detected, the receiver is supplied with power for the duration of the identifier and the information is recorded. In response to switching on the monitoring state, the preestablished radio frequency is determined as the frequency to which a radio frequency refers that transmits no information and that was set before the monitoring state was switched on.
Abstract:
A bit timing signal is regenerated from an encoded digital signal in a receiver using a predetermined sample rate Fs. An input pulse signal is generated in response to predetermined transitions of the encoded digital signal. A clock count signal is generated having a variable clock period according to cyclical counting of the clock count signal up to a count value S at the predetermined sample rate, the count value alternating between an upper value Su and a lower value Sl so that the variable clock period has an average length substantially equal to a data bit period of the encoded digital signal. The clock count signal is synchronized with the encoded digital signal by 1) counting the input pulse signals to generate a pulse count, 2) counting sampling periods between successive input pulse signals to generate a sample count, and 3) generating a sync signal if the pulse count is greater than a pulse threshold and the sample count is greater than a sample threshold. The clock count signal and the pulse count are reset in response to the sync signal.
Abstract:
A radio receiver performs a fast tune to a target frequency channel potentially containing a hybrid broadcast signal for determining whether analog signal contained in the hybrid broadcast signal contains an identifying data indicating the presence of a digital broadcast station before attempting to decode a digital signal contained in the hybrid broadcast signal.
Abstract:
A broadcast response system provides, e.g., a radio broadcast listener with the ability to obtain media content such as music or speech while listening to the radio. The user can respond to items in the radio broadcast such as advertisements, fund raising drives, or interactive listener polls during the broadcast. Data such as song title and artist, author or publisher and the IP address for the location where the digital version of the content is stored, can be transmitted using, e.g., the RBDS/RDS data stream. A reference number representing song title and artist, author or publisher and the IP address for the location where the digital version of the content is stored can also be employed for ease of implementation. This reference number can reside in a lookup table to be accessed by broadcast response server.
Abstract:
An interactive radio system is disclosed. The overall architecture of the interactive radio system includes a broadcast system for broadcasting digital information across a radio signal to web radio receiver units. An interactive broadcast reception system includes a general purpose computer having a processor, display, and storage and internet connection, a broadcast receiver to communicate with the general purpose computer and to decode digital subcarrier data formatted as a broadcast markup language document, and application software that runs on the processor of the computer and communicates with the broadcast receiver to control the operation of the broadcast receiver and to respond to broadcast markup language commands in said broadcast markup language document by connecting to an internet address referenced in said digital subcarrier data.
Abstract:
Method for tuning the reception of radio broadcast signals to an FM RDS transmitter using program related data and transmitter related data and receiver executing the method, providing a band scanning search for detecting FM RDS transmitters exceeding a predetermined reception quality level. To enhance efficiency in data processing and use of storage capacity, transmitter related data including tuning data is stored separately from program related RDS data. Per each detected transmitter a permanency factor indicating the permanency in reception quality thereof is being allocated to each detected RDS transmitter and stored in a first memory bank, along with the relevant tuning data. Per each program identification code carried in the RDS data of the so detected transmitters program related FM RDS data are being stored in a second memorybank, a linkage code defining the storage address within the second memory bank containing the program data carried by the relevant FM RDS transmitter being allocated to the transmitter data of each FM RDS transmitter and stored in the first memory bank.
Abstract:
A system for providing enhanced radio content to a remote user is disclosed. The system includes at least one input that receives non-radio input; and, at least one output interconnected to the at least one input via a hub, wherein the at least one output receives the enhanced radio content via the hub after at least one manipulation of the non-radio input by the hub to form the enhanced radio content, wherein the at least one manipulation is in accordance with the at least one non-radio input.
Abstract:
A method of use provides an extremely efficient manner of ordering a radio program occurring at approximately the time presented, minimizing the need to remember any details: The method is embodied in a range of tactile and voice controls which people in motion need to have. Security options include voice signatures, button sequences and fingerprint identification. User feedback is embodied in both audio and visual display formats. A method of controlling a radio is claimed which provides for placing an order, querying the ordering system for additional information, initializing a user's identifying signature, initializing a session by identifying a user, if the user is not properly identified, blocking access to ordering, and in certain embodiments, calling the police. A radio device is claimed supporting an IF signal source containing essential information on the radio program, an embedded controller, user interface as well as a radio transceiver by which the ordering transaction is carried out.
Abstract:
Scan a plurality of broadcast signals, select and receive one of the scanned broadcast signals and determine parameters about the received broadcast signal. Assign a priority to the received broadcast signal based on the parameters, and store the parameters and priority in memory. Redetermine the parameters in priority order in a manner that reduces the time for redetermining. Reassign a priority to the received broadcast signal based on the redetermined parameters, and update in memory the redetermined parameters and priority.