摘要:
A LIDAR system is provided. The LIDAR system comprises at least one processor configured to: control at least one light source in a manner enabling light flux to vary over a scan of a field of view, the field of view including a first portion and a second portion; receive on a pixel-by-pixel basis, signals from at least one sensor; estimate noise in at least some of the signals associated with the first portion of the field of view; alter a sensor sensitivity for reflections associated with the first portion of the field of view; estimate noise in at least some of the signals associated with the second portion of the field of view; and alter a sensor sensitivity for reflections associated with the second portion of the field of view based on the estimation of noise in the second portion of the field of view.
摘要:
Disclosed is a scanning device including a photonic emitter assembly (PTX) to emit at least one pulse of inspection photons in accordance with at least one adjustable pulse (generation) parameter, a photonic reception and detection assembly (PRX) to receive reflected photons reflected back from an object, the PRX including a dynamic detector to detect the reflected photons based on one or more adjustable detector parameter, the detector further configured to produce a detected scene signal, and a closed loop controller to control the PTX and PRX and to receive a PTX feedback and a PRX feedback, the controller further comprising a situational assessment unit to receive the detected scene signal from the detector and produce a scanning plan and update the at least one pulse parameter and at least one detector parameter at least partially based on the scanning plan.
摘要:
A method and device for object detection are disclosed. In one aspect, a method comprises transmitting a plurality of signals into a region; measuring a noise level during a noise measurement time interval corresponding to each respective one of the plurality of transmitted signals; generating a threshold signal dependent on the noise level; and comparing a first plurality of signals received by a sensor, each of the received signals corresponding to a respective one of the plurality of the transmitted signals, with the respective threshold signal. In another aspect, a device comprising components adapted to carry out the steps of object detection is disclosed. In one example, a thresholding circuit is adapted to generate a threshold signal have a level corresponding to substantially a peak-to-peak level of the measured noise level.
摘要:
Disclosed are a distance image acquisition apparatus and a distance image acquisition method capable of achieving high distance measurement accuracy and omitting wasteful imaging or calculation. The distance image acquisition apparatus (10) includes a distance image sensor (14), a drive mode setting unit (20A), a distance image generation unit (20B), a pulse light emission unit (22), and an exposure control unit (24). The exposure control unit (24) controls emission and non-emission of pulse light emitted from the pulse light emission unit (22) according to a drive mode set by the drive mode setting unit (20A), and controls exposure in the distance image sensor (14). The distance image generation unit (20B) performs calculation processing of a sensor output acquired from the distance image sensor (14) according to the drive mode set by the drive mode setting unit (20A) to generate a distance image corresponding to a distance of a subject.
摘要:
A laser range finder (LRF) and an automated method for determining a return laser signal associated with a target thereof are disclosed. In one example embodiment, the LRF includes a laser beam emitter to emit a laser beam towards a target. Further, the LRF includes a receiver circuit to receive multiple return laser signals reflected from objects including the target and to determine an amplitude of each of the multiple return laser signals. Furthermore, the LRF includes a processor coupled to the receiver circuit to compare the amplitude of each of the multiple return laser signals with a range varying threshold that accounts for range and atmospheric losses and to determine one of the multiple return laser signals as being associated with the target based on the comparison.
摘要:
Systems and methods for determining ranges to a target disposed behind a transparent surface are described. A target acquisition system receives a plurality of lidar returns, at least some of which are from a target and at least some of which are from a transparent surface. The lidar returns correspond to a portion of a lidar signal generated by a lidar, directed toward the target, and reflected back to the lidar from either the target or the transparent surface. A range measurement for each of the plurality of lidar returns is determined. The target acquisition system generates a histogram of the range measurements. The histogram includes an array including a plurality of range bins. Each range bin defines a unique portion of a predetermined distance out from the lidar. The histogram further includes a count associated with each respective range bin. The count corresponds to a number of range measurements falling within the unique portion of the predetermined distance corresponding to that respective range bin. In some implementations of the invention, the target acquisition system determines which of the range measurements correspond to the target based on the histogram. In some implementations of the invention, the target acquisition system determines which of the range measurements correspond to the transparent surface based on the histogram.
摘要:
The invention relates to the production of images associating with each point of the image a depth, i.e. a distance between the observed point and the camera that produced the image.A light source emits N trains of light pulses. For each train of rank I=1 to N, charge is integrated in a short time slot of length Tint that starts with a temporal offset ti relative to the pulse, this temporal offset representing a journey time of the light pulse between the light source and the sensor after reflection from a point placed a distance di from the sensor. The temporal offset ti is the same for all the light pulses of the ith pulse train but the temporal offsets ti of the N trains are different from one another in order to correspond to various distances relative to the sensor. The charge photogenerated by the pulses of a given train is accumulated; then the accumulated charge is read in order to produce an image of rank i representing the pixels located at the distance di. The observation of a scene comprises producing N different images by virtue of which it is possible to associate a distance with each pixel.
摘要:
A method for developing a map of objects in a region surrounding a location is disclosed. The method includes interrogating the region along a detection axis with a series of optical pulses and detecting reflections of the optical pulses that originate at objects located along the detection axis. A multi-dimensional map of the region is developed by scanning the detection axis about the location in at least one dimension. The reflections are detected via a single-photon detector that is armed using a sub-gating scheme such that the single-photon detector selectively detects photons of reflections that originate only within each of a plurality of zones that collectively define the detection field. In some embodiments, the optical pulses have a wavelength within the range of 1350 nm to 1390 nm, which is a spectral range having a relatively high eye-safety threshold and a relatively low solar background.
摘要:
Disclosed is a system and method for processing LiDAR return data prior to analyzing the data to detect planted trees. LiDAR return data for an area in question is filtered to remove data that are not within a predetermined area of where trees have been planted. Planting data such as GPS data that is collected by tractors or other equipment records the location of where trees are planted. The planting data is used to filter the LiDAR return data by eliminating or ignoring LiDAR return data that are not within a buffer zone around the location where the trees have been planted. Once filtered, the LiDAR return data can be analyzed to detect trees or other items of interest in the LiDAR return data.
摘要:
The present invention describes an optical distance measuring device having a pulsed radiation source that is implemented to transmit, in a temporally contiguous radiation pulse period, a radiation pulse having a pulse duration tp that is shorter than the radiation pulse period, and to transmit no radiation pulse in a temporally contiguous dark period. Further, the optical distance measuring device includes a detector for detecting different amounts of radiation in two overlapping detection periods during the radiation pulse period to capture reflections of the radiation pulse at an object surface and a background radiation and/or in two overlapping detection periods during the dark period to capture background radiation. The optical distance measuring device further includes an evaluator determining a signal depending on a distance of the optical distance measuring device to an object based on the detected amount of radiation. Further, the present invention provides a method for optical distance measurement and for multiple sampling.