Abstract:
A method and device for transmitting a first and second uplink signal, each having data and control information is provided. The method includes channel encoding the control information of the second uplink signal based on a number of symbols of control information to produce. The channel encoding includes determining the number of symbols in accordance with a payload size of the data of the first uplink signal and a total number of transmissible symbols of a Physical Uplink Shared Channel (PUSCH) of the first uplink signal.
Abstract:
A method of transmitting a channel quality indicator (CQI) in a wireless communication system is provided. The method includes receiving an uplink grant on a downlink channel, the uplink grant comprising a CQI report indicator, a transport format field and a resource assignment field, the CQI report indicator indicating whether a CQI is reported, the transport format filed indicating a transport format of the CQI, the resource assignment field indicating the number of resource blocks used for reporting the CQI and transmitting the CQI on an uplink channel by using the uplink grant.
Abstract:
A method of acquiring information on a resource region for transmitting PHICH and a method of receiving PDCCH using the same are disclosed. The resource region for transmitting the PHICH can be specified by first information corresponding to the per-subframe PHICH number and second information corresponding to a duration of the PHICH within the subframe. The first information can be specified into a form resulting from multiplying a predetermined basic number by a specific constant. And, the specific constant can be transmitted via PBCH. Moreover, the second information can be acquired from the PBCH as well.
Abstract:
A method for modifying a synchronous non-adaptive retransmission scheme to solve the limitation of the synchronous non-adaptive retransmission scheme is disclosed. A method for indicating not only the new data transmission but also the retransmission using a data scheduling message is disclosed. A method for determining whether there is an error in the ACK signal transmitted from a data reception end using another message to -be received later is disclosed. The retransmission method for a multi-carrier system includes: receiving a grant message including scheduling information for transmitting uplink data wherein a retransmission scheme for the uplink data is predetermined by a first retransmission scheduling, transmitting the uplink data according to the scheduling information and retransmitting the uplink data according to second retransmission scheduling by receiving the second retransmission scheduling information associated with the uplink data with retransmission request.
Abstract:
A method of transmitting a downlink control signal is disclosed, by which localized allocation and distributed allocation are efficiently used in transmitting a downlink control signal. The present invention includes multiplexing the downlink control signal in a manner of if there exists downlink data transmission to a prescribed UE, applying localized allocation to a transmission of the downlink control signal including the scheduling information on the uplink data transmission of the UE and applying distributed allocation to another transmission of the downlink control signal and transmitting the multiplexed downlink control signal.
Abstract:
A method of transmitting a scheduling reference signal (SRS) for uplink scheduling is provided. The method includes transmitting a SRS on a first partial SRS transmission band in a first transmitting time, and transmitting the SRS on a second partial SRS transmission band in a second transmitting time, wherein the first and the second partial SRS transmission bands are parts of a full SRS transmission band and have exclusive positions with each other in the full SRS transmission band, the full SRS transmission band selected for uplink scheduling, the full SRS transmission band comprising a plurality of partial SRS transmission bands.
Abstract:
Signal transmitting and decoding methods considering repeatedly transmitted information in transmitting informations in various types are disclosed. Both a first type information varying with a long period and a second type information varying with a short period are simultaneously transmitted by a same period. A receiving side receiving these informations is able to perform fast decoding by unmasking the corresponding information prior to decoding of a next received signal after obtaining the first type information in a manner of considering a fact that the first type information is repeatedly transmitted for a prescribed period of time.
Abstract:
A method for generating block codes from Golay code and a method and apparatus for encoding data are provided. The method can effectively generate codes having various lengths, various dimensions, and superior hamming weight distribution, and encodes data such as control information having various lengths into codes having strong resistance to channel errors, resulting in an increase of error correction performance.
Abstract:
A method of transmitting data from a user terminal to a base station using a hybrid automatic repeat request (HARQ) scheme with a plurality of redundancy versions of said data, each of the redundancy versions (RV) indicating a transmission start position of a data block in a circular buffer is disclosed. For each retransmission, the redundancy version to be used by considering the previously used redundancy version and a predetermined sequence is determined. Within one sequence, at least two redundancy versions following each other have non consecutive start positions.
Abstract:
A method for transmitting uplink signals, which include ACK/NACK signals, control signals other than the ACK/NACK signals, and data signals, is disclosed. The method comprises serially multiplexing the control signals and the data signals; sequentially mapping the multiplexed signals within a specific resource region in accordance with a time-first mapping method, the specific resource region including a plurality of symbols and a plurality of virtual subcarriers; and arranging the ACK/NACK signals at both symbols near symbols to which a reference signal of the plurality of symbols is transmitted. Thus, the uplink signals can be transmitted to improve receiving reliability of signals having high priority.