Abstract:
The present disclosure relates generally signal processing. One claim recites an apparatus comprising: memory for storing a color video signal comprising first data and second data; and a processor. The processor is programmed for: modifying first color information and second color information of the first data by encoding a signal in the first color information such that the signal includes a first signal polarity, and encoding the signal in the second color information such that signal includes a second signal polarity that is inversely related to the first signal polarity, and modifying first color information and second color information of the second data by encoding the signal in the first color information such that signal includes the second signal polarity, and encoding the signal in the second color information such that the signal includes the first signal polarity. Of course, different combinations and claims are provided too.
Abstract:
The present disclosures relates generally to digital watermarking and data hiding. One claim recites an apparatus comprising: memory for storing data representing video; one or more electronic processors programmed for: embedding a first watermark signal in a first portion of the data, the first watermark signal comprising a first signal polarity and corresponding to first detection preconditioning; embedding a second watermark signal in a second portion of the data, the second watermark signal comprising a second signal polarity that is inversely related to the first signal polarity and corresponding to seconding detection preconditioning; controlling provision of the watermarked video for display in real time, in which temporal averaging of the first watermark signal and second watermark signal over time conceals the first watermark signal and the second watermark signal from a human observer of the video. Of course, other claims are provided too.
Abstract:
The availability of high quality imagers on smartphones and other portable devices facilitates creation of a large, crowd-sourced, image reference library that depicts skin rashes and other dermatological conditions. Some of the images are uploaded with, or later annotated with, associated diagnoses or other information (e.g., “this rash went away when I stopped drinking milk”). A user uploads a new image of an unknown skin condition to the library. Image analysis techniques are employed to identify salient similarities between features of the uploaded image, and features of images in this reference library. Given the large dataset, statistically relevant correlations emerge that identify to the user certain diagnoses that may be considered, other diagnoses that may likely be ruled-out, and/or anecdotal information about similar skin conditions from other users. A great variety of other features and arrangements are also detailed.
Abstract:
The present invention relate generally to digital watermarking and data hiding. One claim recites a method including: obtaining first data and second color data, the first color data and the second color data represent data from a color image signal or color video signal; obtaining a digital watermark pattern, the pattern aiding detection of a watermark message; separating the digital watermark pattern into first frequency components and second frequency components; utilizing a programmed electronic processor or electronic processing circuitry, modifying the first color data by hiding the first frequency components therein; and utilizing a programmed electronic processor or electronic processing circuitry, modifying the second color data by hiding the second frequency components therein. Of course, other combinations and claims are provided too.
Abstract:
The present disclosures relates generally to digital watermarking and data hiding. One claim recites an apparatus comprising: memory for storing data representing video; one or more electronic processors programmed for: embedding a first watermark signal in a first portion of the data, the first watermark signal comprising a first signal polarity and corresponding to first detection preconditioning; embedding a second watermark signal in a second portion of the data, the second watermark signal comprising a second signal polarity that is inversely related to the first signal polarity and corresponding to seconding detection preconditioning; controlling provision of the watermarked video for display in real time, in which temporal averaging of the first watermark signal and second watermark signal over time conceals the first watermark signal and the second watermark signal from a human observer of the video. Of course, other claims are provided too.
Abstract:
Signal detection and recognition employees coordinated illumination and capture of images under to facilitate extraction of a signal of interest. Pulsed illumination of different colors facilitates extraction of signals from color channels, as well as improved signal to noise ratio by combining signals of different color channels. The successive pulsing of different color illumination appears white to the user, yet facilitates signal detection, even for lower cost monochrome sensors, as in barcode scanning and other automatic identification equipment.
Abstract:
This disclosure relates to advanced image signal processing technology including encoded signals and digital watermarking. One implementation is directed to a printed object comprising: a white substrate or background comprising a first area; an ink mixture printed at a first plurality of spatial locations within the first area, the ink mixture printed such that the first area comprises a second plurality of spatial locations without the ink mixture, the ink mixture comprising extender white and Green 7 ink, the ink mixture comprising a volume or weight ratio of 97.5% to 99.75% white extender and 2.5%-0.25% Green 7 ink; in which the first plurality of spatial locations is arranged in a pattern conveying an encoded signal, and in which the white substrate or background and the ink mixture comprise a spectral reflectivity difference at or around 660 nm in a difference range of 8%-30%. Of course, other implementations, methods, packages, systems and apparatus are described in this patent document.
Abstract:
This disclosure relates to advanced image signal processing technology including encoded signals and digital watermarking. We disclose methods, systems and apparatus for selecting which ink(s) should be selected to carry an encoded signal for a given machine-vision wavelength for a retail package or other printed design. We also disclose retail product packages and other printed objects, and methods to generate such, including a sparse mark in a first ink and an overprinted ink flood in a second ink. The first ink and the second ink are related through tack and spectral reflectance difference. Of course, other methods, packages, objects, systems and apparatus are described in this disclosure.
Abstract:
The present disclosure relates to signal processing such as image processing, signal encoding, digital watermarking and data hiding. One claim recites a method including: capturing imagery corresponding to a printed object with a red or blue illumination source, the red or blue illumination source having an illumination wavelength at or around 660 nm or an illumination wavelength in the range of 60 nm centered around 460 nm, said capturing imagery yielding captured data; wherein the printed object includes a clear coat printed thereon, the clear coat including a material that has a peak absorbance at or around 660 nm or in the range of 60 nm centered around 460 nm, the clear coat printed in a manner to convey an encoded plural-bit message, the encoded plural-bit message corresponding to product information; analyzing the captured data with one or more programmed multi-core processors to decode the encoded plural-bit message, said analyzing yielding the product information; and providing the product information as an output. Of course, other claims, technology and combinations are disclosed.
Abstract:
This disclosure relates to advanced image signal processing technology including encoded signals and digital watermarking. One claim is directed to a container comprising: a 3004 or 3003 aluminum alloy shell, the shell comprising an outer surface and an inner surface; a first layer of transparent ink printed on the outer surface as a flood within a first region; a second layer of the transparent ink printed over the first layer of transparent ink within the first region, in which the second layer of the transparent ink is printed to include a plurality of holes without any transparent ink printed therein; an opaque ink printed within the plurality of holes of the second layer of transparent ink on first layer of transparent ink within the first region, in which: i) the outer surface/first layer/second layer, and ii) the outer surface/first layer/opaque ink comprise a spectral reflectance difference at a machine-vision wavelength in the range of 8%-35%, and in which the plurality of holes are arranged in a 2-dimensional pattern according to a machine-readable signal, the 2-dimensional pattern being machine-readable from imagery captured of the first region. Of course, other containers, methods, packages, objects, systems, technology and apparatus are described in this disclosure.