Abstract:
Aspects of the present disclosure relate to techniques for network assisted interference cancellation (NAIC). An example method generally includes receiving network assisted interference cancellation (NAIC) information from a potentially interfering neighbor base station, and performing interference cancellation, suppression or mitigation when processing a signal from a serving base station using the NAIC information.
Abstract:
Certain aspects of the present disclosure relate to techniques that may help address issues in wireless communications systems that utilize unlicensed radio frequency spectrum bands. For example, the techniques presented herein may be used in systems where frames transmitted in licensed and/or un-licensed component carriers are not synchronous.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus determines whether one or more criteria for triggering interference cancellation in a homogeneous network are satisfied. The apparatus transmits a signal to a UE to control triggering the interference cancellation at the UE if the one or more criteria are satisfied.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for network assisted interference cancellation (IC) and interference suppression (IS) for multiple services. According to aspects a user equipment (UE) may determine information regarding system parameters for one or more types of communications services used to transmit potentially interfering signals in one or more neighbor cells, wherein a type of the information determined depends on the type of communications service. The UE may perform interference management using the determined information to cancel or suppress interference caused by the potentially interfering signals.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE. The UE receives synchronization signals and an information block from a first base station. The information block includes information indicating whether the first base station is in a dormant state or an active state. The UE detects the first base station based on the received synchronization signals and on the information indicating whether the first base station is in the dormant state or the active state. The UE may receive, from a second base station, an indication of resources for detecting the first base station. The synchronization signals and the information block may be received in the indicated resources. The UE may move to the first base station from a second base station in a handoff from the second base station to the first base station.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communications and, more particularly, to techniques for single-frequency network (SFN) operation for machine-type communications (MTC) coverage enhancements. A method is provided for wireless communications by a user equipment (UE). The method generally includes detecting a synchronization signal transmitted from at least one of a plurality of transmission points, wherein each of the plurality of transmission points transmits a synchronization signal at a different offset time relative to a subframe boundary in a synchronized network, determining a subframe occurring a fixed time after detecting the synchronization signal to monitor for system information transmitted from at least one of the plurality of transmission points, and monitoring for a system information block during the determined subframe.
Abstract:
A method of wireless communication is presented. The method includes determining whether decoding candidates for enhanced control channel resource sets overlap. The method further includes determining uplink resources based on a predefined rule when the decoding candidates overlap.
Abstract:
Interference cancellation occurs for devices, where the source of the interference is another UE. The victim UE receiver identifies subframes vulnerable to potential interference from other UEs. Candidate resource blocks in the identified vulnerable subframes are listed. Interference is cancelled for edge resource blocks and valid contiguous resource blocks.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in which downlink transmission modes in a wireless network are semi-statically configured for a mobile terminal in multiple-input multiple-output (MIMO) operation. The apparatus provides multiple precoding matrix indicators (PMIs) for a plurality of ranks. The provision of multiple PMIs by the apparatus enables balanced performance among different ranks and avoids less than optimal performance observed when the apparatus provides only a single rank and PMI that are generally not optimal for all transmissions. Feedback configuration information received by an apparatus defines a plurality of channel state information feedback instances conditioned on an admissible rank value. Rank indicators (RIs) and PMIs corresponding to the feedback instances are determined and feedback is provided for the channel state information feedback instances.