Abstract:
method is provided for communicating with a User Equipment (UE) supporting a High Power Saving Reception Mode (HPSRM) mode by an evolved Node B (eNB) in a wireless communication system. The method includes receiving Discontinuous Reception (DRX) cycle information from a network entity performing mobility management for the UE by the eNB communicating with the UE over a wireless link; and broadcasting system information including the DRX cycle information. The DRX cycle information is set longer than DRX cycle information of a UE non-supporting the HPSRM mode. By doing so, an efficient paging method for an UE operating in the HPSRM mode may be provided.
Abstract:
A method and apparatus are provided for transmitting an uplink scheduling request in a mobile communication system. Scheduling request transmission cycles are set according to priorities between a terminal and a radio resource controlling node. The terminal transmits the scheduling request to the radio resource controlling node according to a scheduling request transmission cycle corresponding to a highest priority among priorities corresponding to uplink data or uplink control signals, if the uplink data or the uplink control signals are generated from an upper layer. The terminal receives scheduling information from the radio resource controlling node, and determines whether resource allocation information is included in the scheduling information. The terminal cyclically transmits the scheduling request to the radio resource controlling node in the scheduling request transmission cycle, if the resource allocation information is not included in the scheduling information.
Abstract:
The present disclosure relates to a method and apparatus for performing random access in a user equipment for a small cell e-NB with a small cell service area in heterogeneous e-NB cell carrier integration (dual connectivity or inter-eNB carrier aggregation) in mobile communication systems. In accordance with an aspect of the present disclosure, a method for performing random access in a mobile communication system is provided. The method includes receiving a configuration request message for configuring a Serving Cell Group (SCG) from a second eNB located in a service area of a first eNB through the first eNB; configuring an SCG cell based on the configuration request message, and sending a configuration response message in response to the configuration request message to the second eNB through the first eNB; and performing random access if there is uplink data present on a logic channel (LCH) relocated into the SCG cell.
Abstract:
A method and apparatus of a terminal and a base station in a mobile communication system are provided. The method includes receiving measurement information including a measurement interval from a base station, determining a measurement period based on a discontinuous reception (DRX) cycle if a carrier is activated, determining the measurement period based on the received measurement interval if the carrier is deactivated, and generating a filtered measurement result for the carrier based on the measurement period.
Abstract:
A method and apparatus for performing communication in a wireless communication system are provided. The method includes identifying a transmission mode configured for a serving cell by a Base Station (BS), by a User Equipment (UE), identifying an antenna configuration of the BS by the UE, determining the number of bits for a Rank Indication (RI) representing the number of layers based on the transmission mode and the antenna configuration, and generating an RI using the determined number of bits and transmitting the RI in transmission resources of the serving cell to the BS by the UE.
Abstract:
A method for performing a Discontinuous Reception (DRX) operation by a connected mode User Equipment (UE) in a mobile communication system. The method includes waking up at a wake-up timing, and determining whether an incoming data indication is received from a Node B; reestablishing uplink synchronization upon receipt of the incoming data indication; and waking up after sleeping for a time from the incoming data indication reception timing, receiving a transmission resource allocation message from the Node B, and receiving downlink data over allocated transmission resources.
Abstract:
A method and apparatus are provided for transmitting an uplink scheduling request in a mobile communication system. Scheduling request transmission cycles are set according to priorities between a terminal and a radio resource controlling node. The terminal transmits the scheduling request to the radio resource controlling node according to a scheduling request transmission cycle corresponding to a highest priority among priorities corresponding to uplink data or uplink control signals, if the uplink data or the uplink control signals are generated from an upper layer. The terminal receives scheduling information from the radio resource controlling node, and determines whether resource allocation information is included in the scheduling information. The terminal cyclically transmits the scheduling request to the radio resource controlling node in the scheduling request transmission cycle, if the resource allocation information is not included in the scheduling information.
Abstract:
A method for transmitting a random access preamble using a random access procedure in a mobile communication system. The random access preamble transmission method includes selecting, upon triggering of the random access procedure, one of random access preamble sets predefined between a User Equipment (UE) and an Evolved Node B (ENB) according to whether a radio channel condition is greater than a radio channel condition threshold and a size of a message that the UE will transmit after transmission of the random access preamble is greater than a minimum message size, randomly selecting a random access preamble from the selected random access preamble set, and transmitting the selected random access preamble to the ENB over a random access channel.
Abstract:
The present disclosure relates to a sensor network, Machine Type Communication (MTC), Machine-to-Machine (M2M) communication, and technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the above technologies, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A user equipment in a communication system, according to various embodiments of the present disclosure, includes: a controller that determines at least one communication service to deactivate among communication services that are able to be provided and a transmitter that transmits, to a server, a message for identifying the at least one communication service to deactivate.
Abstract:
Methods and apparatuses are provided in which a user equipment (UE) receives a system information block (SIB) from a network. The UE identifies at least one downlink (DL) period based on a first uplink (UL)/DL configuration included in the SIB. The UE monitors a physical downlink control channel (PDCCH) during the at least one DL period using a discontinuous reception (DRX) operation. The UE obtains downlink control information (DCI) for indicating at least one second UL/DL configuration as a format for one or more time intervals from the monitored PDCCH. The UE determines the format for the one or more time intervals based on the obtained DCI. The monitoring of the PDCCH includes monitoring the PDCCH in an active time of a DRX cycle. The active time includes a time when the UE performs continuous reception.