Abstract:
Techniques are provided for manufacturing a light-emitting device having high internal quantum efficiency, consuming less power, having high luminance, and having high reliability. The techniques include forming a conductive light-transmitting oxide layer comprising a conductive light-transmitting oxide material and silicon oxide, forming a barrier layer in which density of the silicon oxide is higher than that in the conductive light-transmitting oxide layer over the conductive light-transmitting oxide layer, forming an anode having the conductive light-transmitting oxide layer and the barrier layer, heating the anode under a vacuum atmosphere, forming an electroluminescent layer over the heated anode, and forming a cathode over the electroluminescent layer. According to the techniques, the barrier layer is formed between the electroluminescent layer and the conductive light-transmitting oxide layer.
Abstract:
One of factors that increase the contact resistance at the interface between a first semiconductor layer where a channel is formed and source and drain electrode layers is a film with high electric resistance formed by dust or impurity contamination of a surface of a metal material serving as the source and drain electrode layers. As a solution, a first protective layer and a second protective layer including a second semiconductor having a conductivity that is less than or equal to that of the first semiconductor layer is stacked successively over source and drain electrode layers without exposed to air, the stack of films is used for the source and drain electrode layers.
Abstract:
To achieve promotion of stability of operational function of display device and enlargement of design margin in circuit design, in a display device including a pixel portion having a semiconductor element and a plurality of pixels provided with pixel electrodes connected to the semiconductor element on a substrate, the semiconductor element includes a photosensitive organic resin film as an interlayer insulating film, an inner wall face of a first opening portion provided at the photosensitive organic resin film is covered by a second insulating nitride film, a second opening portion provided at an inorganic insulating film is provided on an inner side of the first opening portion, the semiconductor and a wiring are connected through the first opening portion and the second opening portion and the pixel electrode is provided at a layer on a lower side of an activation layer.
Abstract:
It is an object to provide a low-cost oxide semiconductor material which is excellent in controllability of the carrier concentration and stability, and to provide a field effect transistor including the oxide semiconductor material. An oxide including indium, silicon, and zinc is used as the oxide semiconductor material. Here, the content of silicon in the oxide semiconductor film is greater than or equal to 4 mol % and less than or equal to 8 mol %. The field effect transistor including such an In—Si—Zn—O film can withstand heat treatment at a high temperature and is effective against −BT stress.
Abstract:
An object is to improve field effect mobility of a thin film transistor using an oxide semiconductor. Another object is to suppress increase in off current even in a thin film transistor with improved field effect mobility. In a thin film transistor using an oxide semiconductor layer, by forming a semiconductor layer having higher electrical conductivity and a smaller thickness than the oxide semiconductor layer between the oxide semiconductor layer and a gate insulating layer, field effect mobility of the thin film transistor can be improved, and increase in off current can be suppressed.
Abstract:
A pixel portion and a driver circuit driving the pixel portion are formed over the same substrate. At least a part of the driver circuit is formed using an inverted staggered thin film transistor in which an oxide semiconductor layer is used and a channel protective layer is provided over the oxide semiconductor layer serving as a channel formation region which is overlapped with the gate electrode. The driver circuit as well as the pixel portion is provided over the same substrate to reduce manufacturing costs.
Abstract:
An audio device capable of inhibiting malfunction of an information terminal is provided. The audio device includes a sound sensor portion, a sound separation portion, a sound determination portion, and a processing portion. The sound sensor portion has a function of sensing sound. The sound separation portion has a function of separating the sound sensed by the sound sensor portion into a voice and sound other than a voice. The sound determination portion has a function of storing the feature quantity of the sound. The sound determination portion has a function of determining, with a machine learning model such as a neural network model, whether the feature quantity of the voice separated by the sound separation portion is the stored feature quantity. The processing portion has a function of analyzing an instruction contained in the voice and generating an instruction signal representing the content of the instruction in the case where the feature quantity of the voice is the stored feature quantity. The processing portion has a function of performing, on the sound other than a voice separated by the sound separation portion, processing for canceling the sound other than a voice. Specifically, the processing portion has a function of performing, on the sound other than a voice, processing for inverting the phase thereof.
Abstract:
A data processing system that can sense fatigue or the like using a neural network is provided. First, a reference image is obtained on the basis of first to n-th images (n is an integer greater than or equal to 2). Next, the first to n-th images and the reference image are input to an input layer of a neural network, first to n-th estimated ages and a reference estimated age are output from an output layer, and first to n-th data and reference data are output from an intermediate layer. After that, first to n-th coordinates are obtained in each of which an x-coordinate is a value corresponding to a difference between the reference estimated age and the first to n-th estimated ages and a y-coordinate is a value corresponding to the degree of similarity between the reference data and the first to n-th data. Next, a query image is input to the input layer, a query estimated age is output from the output layer, query data is output from the intermediate layer, and query coordinates are obtained using the output results. Whether a person of a face included in the query image feels fatigue or the like is determined on the basis of the first to n-th coordinates and the query coordinates.
Abstract:
With an increase in the definition of a display device, the number of pixels is increased, and thus the numbers of gate lines and signal lines are increased. Due to the increase in the numbers of gate lines and signal lines, it is difficult to mount an IC chip having a driver circuit for driving the gate and signal lines by bonding or the like, which causes an increase in manufacturing costs. A pixel portion and a driver circuit for driving the pixel portion are formed over one substrate. At least a part of the driver circuit is formed using an inverted staggered thin film transistor in which an oxide semiconductor is used. The driver circuit as well as the pixel portion is provided over the same substrate, whereby manufacturing costs are reduced.
Abstract:
It is an object to provide a semiconductor device including a thin film transistor with favorable electric properties and high reliability, and a method for manufacturing the semiconductor device with high productivity. In an inverted staggered (bottom gate) thin film transistor, an oxide semiconductor film containing In, Ga, and Zn is used as a semiconductor layer, and a buffer layer formed using a metal oxide layer is provided between the semiconductor layer and a source and drain electrode layers. The metal oxide layer is intentionally provided as the buffer layer between the semiconductor layer and the source and drain electrode layers, whereby ohmic contact is obtained.