Abstract:
A rollable display includes a frontplane having multiple OLED pixels and a backplane having a flexible substrate. The flexible substrate has a perimeter and a thin film transistor array operably connected to the OLED pixels. At least one rigid band of drivers is operably connected to the backplane and positioned along an edge of the substrate perimeter. The flexible substrate includes a material having a glass transition temperature of less than 200 degrees Celsius. A method of fabricating a rollable display is also disclosed.
Abstract:
A flexible OLED display module that is capable of repetitive flexing and having a low radius of curvature is provided. According to an embodiment, a flexible OLED display module may include a first stack having a substrate, a backplane disposed on the substrate, and an organic electroluminescent layer formed on the backplane. The flexible OLED display module may further include a second stack having a lid layer, and a polarizer deposited on the lid layer. The first stacked laminated with the second stack.
Abstract:
A display includes a frontplane having multiple pixels in a first pixel region and multiple pixels in a second pixel region. At least one display characteristic in the first pixel region is different from at least one display characteristic in the second pixel region. The at least one characteristic is selected from the group consisting of resolution, cavity mode, outcoupling, color and color filter. A display with a curved scan line and variable spaced data line backplane architecture is also described. In addition, a method of reducing power requirements in a display is described.
Abstract:
An autostereoscopic display system includes a display including a plurality of addressable pixels. Each of the plurality of pixels includes two or more sub-pixels. The display is adapted to have n views in the horizontal direction wherein n is an integer greater than or equal to 2. A native pixel density of the display in the horizontal direction divided by n is greater than 75% of a native pixel density in the vertical direction. The system further includes a view selector that, for each of two or more viewing perspectives, makes one of the views visible and a multiplexer system in operative connection with the display. The multiplexer system is adapted to controllably shift light horizontally from at least one of the plurality of pixels.
Abstract:
An OLED panel having a plurality of OLED circuit elements is provided. Each OLED circuit element may include a fuse or other component that can be ablated or otherwise opened to render the component essentially non-conductive. Each OLED circuit element may comprise a pixel that may include a first electrode, a second electrode, and an organic electroluminescent (EL) material disposed between the first and the second electrodes. Each of the OLED circuit elements may not be electrically connected in series with any other of the OLED circuit elements.
Abstract:
The present invention provides an emissive region in organic light emitting devices having a combined emission from at least two emissive materials, a fluorescent blue emissive material and a phosphorescent emissive material. The emissive region may further comprise additional fluorescent or phosphorescent emissive materials. Preferably, the emissive region has three different emissive materials—a red emissive material, a green emissive material and a blue emissive material. Organic light emitting devices incorporating the emissive region provides a high color-stability of the light emission over a wide range of currents or luminances.
Abstract:
A hybrid display includes a blue LED backlight layer, at least one shutter element, a frontplane having multiple sub-pixels, and a backplane operatively connected to the frontplane and the at least one shutter element. The backplane and the at least one shutter element are positioned between the backlight layer and the frontplane.
Abstract:
Systems, devices, and techniques are provided for operating a display and/or an illumination source based upon the direction of a user's gaze and/or a desired illumination level in a monitored area. One or more elements may be controlled with sensor input and application lighting preferences. For example, when a user receives a video call, light may be activated to illuminate their face. When the user is looking at the display, the display will be at the brightness necessary for the lighting conditions. When the user looks away from the screen, the screen may dim further and the lighting elements for the desk can brighten. Similarly, embodiments may adjust the lighting in a monitored location based upon lighting levels identified in other areas.
Abstract:
Described herein are devices and methods related to lighting systems that are color tunable and have a long lifetime. In certain embodiments, the device comprises two independently controlled phosphorescent OLED lighting panels coupled together in one package to emit light in one direction. In certain embodiment, aspects of the device are tunable, such as RGB color, color temperature, and luminance.
Abstract:
OLED panels and techniques for fabricating OLED panels are provided. Multiple cuts may be made in an OLED panel to define a desired shape, as well as the location and shape of external electrical contacts. The panel may be encapsulated before or after being cut to a desired shape, allowing for greater flexibility and efficiency during manufacture.