Abstract:
The disclosed spray deposition systems and methods use spray charging and discharging techniques to assist with digital deposition of spray droplets on a substrate. For example, the disclosed systems and methods have a charging system that generates spray droplets from a spray generator and charges the droplets. Focusing electrodes help to collimate the droplets into a tight droplet stream and, optionally, steering electrodes help direct the tight droplet stream. A charge removal system neutralizes or removes the charge from the droplets, either during the deposition of the droplets on a substrate or after the droplets have been deposited on a substrate.
Abstract:
A head is disclosed for use with a manufacturing system. The head may have a housing configured to discharge a tubular structure reinforced with at least one continuous fiber and having a three-dimensional trajectory, and a cure enhancer operatively connected to the housing and configured to cure a liquid matrix in the tubular structure during discharge. The head may also have a nozzle configured to discharge a fill material into the tubular structure, and a wand extending from the housing to the nozzle.
Abstract:
An electrostatic coating apparatus includes a coating gun that sprays a coating material toward a coated matter, a high-voltage application apparatus that applies a high voltage to the coating gun, a bell-side current calculation unit that calculates a bell-side current to flow from the coating gun to the coated matter, an earth-side current measurement unit that measures an earth-side current to flow from the coated matter to the earth, and an earth check unit that detects an abnormal earth state of the coated matter, depending on a magnitude relation between the bell-side current calculated at the time of electrostatic coating and the bell-side current when the earth is properly connected, and a magnitude relation between the earth-side current measured at the time of the electrostatic coating and the earth-side current when the earth is properly connected.
Abstract:
A valve unit for a coating system, for example an integrated color changer or two-component mixer in a rotary sprayer, is disclosed. An exemplary valve unit includes a housing and at least one valve receptacle arranged in the housing, and serves to receive a valve. The housing includes at least one first housing part and one second housing part, wherein the first housing part is formed of a different material than the second housing part.
Abstract:
Target substrates are electrostatically coated by flowing an electrically isolated wet coating composition containing waterborne coalescable polymeric binder into an electrostatic coating apparatus (100), depositing the coating composition onto a rotating electrostatically-charged atomizer (104) and then onto the target substrate, flowing an electrically isolated aqueous cleaning liquid into the apparatus before deposition of the coating composition onto the rotating atomizer is halted or interrupted, and depositing the aqueous cleaning liquid onto the atomizer before or within a sufficiently short time after a halt or interruption in coating composition deposition onto the atomizer so that a coalesced polymeric binder film does not accumulate on the atomizer.
Abstract:
In a rotary atomizer (10) including a rotating bell (92) secured to a rotating shaft (20a) of an air motor (20) held in an atomizer body, the rotating bell having a plurality of orifices (92a) for supplying paint to an object to be painted, the rotating bell being rotated to spray the paint toward the object to be painted, the rotary atomizer comprises a paint passage (102a) with a paint port (112c) at an end thereof fluidly communicating with the orifices of the rotating bell, and a water passage (108) arranged outside of the paint passage and having a water port at an end of the water passage leading to the orifices of the rotating bell. A needle (94) for opening and closing the paint port may be provided.
Abstract:
In a rotary atomizer (10) including a rotating bell (92) secured to a rotating shaft (20a) of an air motor (20) held in an atomizer body, the rotating bell having a plurality of orifices (92a) for supplying paint to an object to be painted, the rotating bell being rotated to spray the paint toward the object to be painted, the rotary atomizer comprises a paint passage (102a) with a paint port (112c) at an end thereof fluidly communicating with the orifices of the rotating bell, and a water passage (108) arranged outside of the paint passage and having a water port at an end of the water passage leading to the orifices of the rotating bell. A needle (94) for opening and closing the paint port may be provided.
Abstract:
The invention relates to a device for receiving and/or discharging a disposal medium (E) from cleaning and/or rinsing processes of an application apparatus (AG). The device can comprise a separation equipment (A) which is provided for in order to receive the disposal medium (E) discharged by the application device (AG) and to subject it to a separation. The device can also comprise a receiving equipment (AE) which is provided for in order to receive a disposal medium (E) and a suction device (SE) which is provided for in order to suction and/or suction off at least a part of the disposal medium (E) led to or into the receiving equipment (AE). The invention relates also to corresponding methods.
Abstract:
A valve unit for a coating system, for example an integrated color changer or two-component mixer in a rotary sprayer, is disclosed. An exemplary valve unit includes a housing and at least one valve receptacle arranged in the housing, and serves to receive a valve. The housing includes at least one first housing part and one second housing part, wherein the first housing part is formed of a different material than the second housing part.