Abstract:
A component for a gas turbine engine includes an airfoil section including a free end and an abrasive coating sprayed onto the free end, the abrasive coating including a polymer matrix and an abrasive filler, the abraisive filler between about 50%-75% by volume of the abrasive coating.
Abstract:
The invention provides pneumatic shuttering of a focused or collimated aerosol particle stream. The aerosol stream can be collimated by an annular sheath of inert or non-inert gas. The apparatus propagates a sheathed aerosol stream through a series of aerodynamic lenses along the axis of a flow cell. The final lens is typically positioned above a substrate, so that direct material deposition is provided. A substantially perpendicularly-flowing gas external to the aerodynamic lens system is used to redirect the particle stream away from the flow axis and through an exhaust port, thereby shuttering the collimated aerosol stream. The pneumatic shutter enables printing of discreet structures, with on/off shuttering times of approximately 1 to 100 milliseconds.
Abstract:
In one example, a liquid mixture nozzle for flowing a liquid mixture therethrough includes a body having a flow inlet and a flow outlet. The flow inlet is configured to couple to a first piece of piping and the flow outlet is configured to couple to a second piece of piping. The liquid mixture nozzle also includes a converging section having a decreasing diameter positioned adjacent the flow inlet, an orifice positioned at a narrow end of the converging section, an intermediate section having a constant diameter positioned adjacent the orifice, a diverging section having an increasing diameter positioned adjacent the intermediate section and the flow outlet.
Abstract:
Microfluidic laminar flow nozzle apparatuses are described herein. An example apparatus includes a base having a sidewall that forms a lower plenum chamber, and a micro-fluidic nozzle panel disposed above the base to enclose the lower plenum chamber, the micro-fluidic nozzle panel including a plurality of micro-fluidic nozzles, each of the plurality of micro-fluidic nozzles having a fluid output orifice for outputting a fluid.
Abstract:
An inner surface-modified tube includes fine particles that are buried in an inner surface of a tube with part of surfaces of the fine particles exposed, wherein the fine particles are unevenly distributed such that more fine particles are distributed in a region from a center of the tube to the inner surface of the tube than in a region from the center of the tube to an outer surface of the tube based on a thickness direction of the tube, an arithmetic average roughness Ra of the inner surface of the tube is 1 nm or more and 100 μm or less, a particle diameter of each fine particle is 10 nm or more and 100 μm or less, and an inner diameter of the tube is 0.01 mm or more and 100 mm or less.
Abstract:
An apparatus for applying mortar is provided. The apparatus includes a support sled and a mixer positioned on the support sled. The mixer combines a received dry powder mortar and a liquid, and a pump positioned on the support sled and adapted to pump the mixed mortar and liquid. The apparatus further includes a spray head positioned on the support sled and adapted to receive the pumped mortar and liquid mixture and spray the mixture.
Abstract:
A process of applying a porous metallic structure and a cold-sprayed article are disclosed. The process includes cold spraying a solid feedstock and a low-melt material onto an article and removing at least a portion of the low-melt materials or applying a porous metallic structure includes cold spraying onto an article with two converging-diverging nozzles. The cold-sprayed article includes a porous metallic structure having a portion formed from cold spraying a solid feedstock. The portion includes the phases and microstructure of the solid feedstock.
Abstract:
The present invention concerns a liquid droplet spray system for atomising a liquid substance, comprising: a support having a central aperture (27), a liquid droplet spray device in which a space is provided, the space being arranged to receive the liquid substance, and including a nozzle body (28) covering the space such that the liquid substance may exit the space of the device by traversing the nozzle body (28) and the system by traversing the central aperture (27) of the support, a reservoir (33) for containing the liquid substance.
Abstract:
An improved apparatus for the gunning of a material is provided having a nozzle with an inner passage defined by an inner tubular member having an inlet end into which a wetted material is to be introduced and an outlet end from which the material is to be sprayed. An outer tubular member is disposed around the inner tubular member defining an outer passage between the inner and outer tubular members. A compressed gas is passed through the outer passage and impinged on the wetted material exiting the inner passage to better control the spray pattern of the wetted material. The inner tubular member extends out beyond the outlet end of the outer tubular member and the inner surface of the outer tubular member and the outer surface of the inner tubular member near the outlet end are chamfered to provide an optimal attitude for the impinging air.
Abstract:
An apparatus for mixing an additive into a fluid to form a settable mixture includes a main fluid passageway having an inlet for receiving a supply of the fluid and an outlet for dispensing the fluid, the passageway having a longitudinal axis. The apparatus includes a control valve defining a portion of the main fluid passageway and configured for selectively controlling the flow of fluid in the passageway, an additive injector disposed in the passageway and having an emitter disposed in close relationship with the axis and oriented toward the outlet. A static mixer is disposed between the injector and the outlet for enhancing the uniform mixing of the additive and the fluid. Connection points between the inlet, the valve and the static mixer are configured for smooth transition of fluid and the prevention of at least one of the collection and premature setting of the mixture.