Abstract:
A high temperature shape memory alloy is provided which possesses high machinability and is suitable for high temperature applications. The high temperature shape memory alloy consists of Ni from 34.7 mol % to 48.5 mol %, at least either Zirconium or Hafnium as transformation temperature increasing additives, with the sum of which 6.8 mol % to 22.5 mol %, and at least either Niobium or Tantalum as machinability improving additives, with the sum of which 1 mol % to 30 mol %; and Boron less than 2 mol %; and Titanium as the balance; and unavoidable impurity.
Abstract:
Disclosed is a single crystal alloy consisting essentially of, by weight, 0.06-0.09% carbon, 0.016-0.035% B, 0.2-0.4% Hf, 0-0.02% Zr, 6.5-8.5% Cr, 0.4-1.0% Mo, 5.5-9.5% W, 1.2-3.1% Re, 8-10% Ta, 0.3-1.0% Nb, 0-0.4% Ti, 4.7-5.4% Al, 0.5-5.0% Co, 0.1-5% Fe, and the balance of Ni and unavoidable impurities. The alloy is free from solidification cracks during casting a large-sized blade of gas turbines, has grain boundary strength sufficient for assuring the reliability during operation, and further has excellent oxidation resistance to a high combustion gas temperature while having excellent high-temperature strength comparable to that of a conventional single crystal alloy.
Abstract:
A vacuum pump is provided in which gas molecules in a vacuum chamber are sucked and exhausted by the rotational motion of a rotor rotatably supported in a pump case. At least one nickel alloy layer is disposed on a surface of at least one component defining a flow path in the vacuum pump for increasing a resistance of the component to corrosion due to a corrosive effect of a gas flowing through the flowpath. A nickel oxide is formed on a surface of the nickel alloy layer and has a higher emissivity than that of the nickel alloy layer for increasing a quantity of heat radiated from the surface of the component when the component is heated during operation of the vacuum pump.
Abstract:
An iron-base sintered part having high density and totally enhanced strength, toughness and abrasion resistance, a manufacturing method of the iron-base sintered part, and an actuator are disclosed. The iron-base sintered part is formed by an iron-nickel-molybdenum-carbon-based sintered alloy, has density of 7.25 g/cm3 or more, and has a carburization quenched structure. A method for manufacturing the iron-base sintered part includes a molding process of charging a raw mixture powder of an iron-nickel-molybdenum-based metal powder and a carbon-based powder into a cavity of a molding die and compressing the raw powder in the cavity to form a consolidation body, a sintering process of sintering the consolidation body at a sintering temperature to form a sintered alloy, and a carburization quenching process of heating the sintered alloy in a carburization atmosphere and quenching the heated alloy.
Abstract:
A leakage seal for use in a gas path between two relatively rotatable members of a gas turbine comprises a foil layer and a cloth layer. The foil layer has two expansive surfaces, a single one of which is covered by the cloth layer. The leakage seal has a proximal end, a distal end, and a generally flat region between the proximal and distal ends. The proximal end is attached to an associated one of the turbine members. The distal end diverges from the generally flat region so as to define a curved hook, along which the cloth portion is wrapped over the foil layer, when the distal end is viewed in cross-section.
Abstract:
A swash plate type compressor is disclosed, wherein a shoe, having a first surface slidably disposed on a swash plate and a second surface received in a pocket formed in a piston, is formed from a copper alloy.
Abstract:
The present disclosure includes a turbocharger. The turbocharger may include a titanium-aluminide turbine and a shaft. A single joint connects the turbine to the shaft. The joint may include an alloy comprising at least 80 atomic percent nickel and palladium.
Abstract:
A leakage seal for use in a gas path between two relatively rotatable members of a gas turbine comprises a foil layer and a cloth layer. The foil layer has two expansive surfaces, a single one of which is covered by the cloth layer. The leakage seal has a proximal end, a distal end, and a generally flat region between the proximal and distal ends. The proximal end is attached to an associated one of the turbine members. The distal end diverges from the generally flat region so as to define a curved hook, along which the cloth portion is wrapped over the foil layer, when the distal end is viewed in cross-section.
Abstract:
A composite turbine disc includes a high nickel rim section and a steel bore section. The rim section is formed from a high nickel alloy which provides a higher melting point as compared to the material used for the bore section. A plating or forged welding enhanced agent layer is disposed between the bore section and rim section. Composite disc can be formed by forging the rim and bore material together, or by welding the rim and bore material together.