Abstract:
The invention relates to a method for producing a photodiode contact for a TFA image sensor which includes a photodiode, produced by deposition of a multilayer system and a transparent conductive contact layer on an ASIC circuit that has been coated with an intermediate metal dielectric component and that has vias in a photoactive zone which are arranged on a pixel grid. Said vias extend through the intermediate metal dielectric component and are linked with respective strip conductors of the CMOS-ASIC circuit. A pixel-grid structured barrier layer, and on top thereof a CMOS metallization, are arranged on the intermediate metal dielectric component. The aim of the invention is to improve the characteristic variables of the photodiode by simple technological means. This object is achieved by removing at least the CMOS metallization present on the CMOS-ASIC circuit in the area of the photoactive zone except for the structured barrier layer and subsequently applying the multilayer system of the photodiode and the conductive transparent contact layer to the CMOS-ASIC circuit.
Abstract:
The invention relates to a method for the production of both MOS transistors with extremely low leakage currents at the pn junctions and logic/switching transistors, whose gates are laterally defined by spacers in a p-substrate or a p-well in an n-substrate. The aim of the invention is to provide a method for the production of MOS transistors with extremely low leakage currents that allows for parallel logic/switching transistors. This is achieved by initially carrying out an LDD ion implantation via the edges of the gates in order to form an LDD region and subsequently removing the spacers by means of an anisotropic etching step exhibiting high selectivity in relation to the gate and substrate materials, including the covering layers thereof, or by covering the MOS transistors with an extremely low leakage currents prior to isotropic spacer production such that the spacers are formed exclusively on the edges of the gates of the logic/switching transistors, while the MOS transistors with an extremely low leakage current always remain connected solely via the LDD region, and there is no high dose implantation in the S/D regions of these MOS transistors with extremely low leakage currents.
Abstract:
A signal resampler carries out a time domain interpolation of an input signal for compensating for frequency offset, such as found in an ADSL system. A sample selector interpolator carries out part of the interpolation and a second, e.g. polynomial interpolator carries out the rest of the interpolation. The time interval between samples being interpolated, can be effectively divided between a sample selector interpolator and a small second, e.g. polynomial interpolator. The complexity of the second, e.g. polynomial interpolator can be reduced or its accuracy increased if it is effectively interpolating over a much smaller time interval. The sample selector interpolator can be an oversampling arrangement, and enable the order of the second, e.g. polynomial interpolator to be reduced. Selected ones of the oversampled samples are fed to the second, e.g. polynomial interpolator to keep the operating frequency lower. A chain of upsamplers can be used to generate the oversampled samples.
Abstract:
The method is for decoding an LDPC encoded codeword, the LDPC code being represented by a bipartite graph between check nodes and variable nodes including first variable nodes and second variable nodes connected to the check nodes by a zigzag connectivity. The method includes updating messages exchanged iteratively between variable nodes and check nodes including a first variable processing phase during which all the messages from the first variable nodes to the check nodes are updated and a check nodes processing phase during which all the messages from the check nodes to the first variable nodes are updated. The check nodes processing phase further includes updating all the messages from the second variable nodes to the check nodes, and directly passing an updated message processed by a check node to the next check node through the zigzag connectivity.
Abstract:
The method of interference cancellation in a CDMA wireless communication system comprises receiving an incident digital signal containing a user signal transmitted on a CDMA user physical channel and an interfering signal, projecting said incident digital signal onto a projection space orthogonal to the space containing said interfering signal, filtering said projected signal with a filter matched to the CDMA user physical channel for detecting the data contained in said user signal.
Abstract:
An incident pulse signal of the ultra wideband type conveys digital information that is coded using pulses having a known theoretical shape. A decoding device includes an input for receiving the incident signal, and for delivering a base signal. A comparator receives the base signal and delivers an intermediate signal representative of the sign of the base signal with respect to a reference. A sampling circuit samples the intermediate signal for delivering a digital signal. A digital processing circuit correlates the digital signal with a reference correlation signal corresponding to a theoretical base signal arising from the reception of a theoretical pulse having the known theoretical shape.
Abstract:
A cellular telephone includes a plurality of power amplifiers having a common operating region. If one of the amplifiers has to be deselected, a desired moment for the switching to another amplifier is defined based upon a predetermined transmission interrupt criterion. The power continues to be adjusted with the currently selected amplifier until the instant of switch over. Switching to the other amplifier may then be performed after the transmission has been interrupted.
Abstract:
A combined decoder reuses input/output RAM of a turbo-code decoding circuit as alpha-RAM or beta-RAM for a convolutional code decoding circuit. Additional operational units are used for both turbo-coding and convolutional coding. An effective harware folding scheme permits calculation of 256 states serially on 8 ACS units.
Abstract:
First estimations of the fading coefficients of a multi-path transmission channel are carried out in the sense of maximum likelihood. Sets of Wiener filter coefficients are stored according to predetermined speeds of movement of the mobile terminal and predetermined power levels of the signal. The real speed of the mobile terminal is estimated and the power of the signal for each path is measured. From this, a set of Wiener filter coefficients is derived with which the first estimations are filtered to obtain the final estimation of the fading coefficients.
Abstract:
A device for processing data to be interleaved and stored in target memories includes N interleaving buffers, N producers, and N cells. Each cell includes a register bank of size W, and a delay circuit. The variable M defines a maximum number of concurrent write operations supported per time step W, and defines a maximum buffer size. These parameters are chosen to reflect a standard case. At any time step, each of the N interleaving buffers receives m log-likelihood ratio (LLR) inputs and writes up to M of these into the register banks. When m is larger than M, m-M producers are delayed by the delay circuit. When a buffer overflow occurs (more than W LLRs values), m producers are delayed by the delay circuit. One LLR value is fetched from the register bank and is written in an SRAM interleaving memory.