Abstract:
A combustor includes a housing and a liner that define an inlet configured to receive an inlet fluid. An inlet splitter is disposed in the inlet which splits the inlet into a first annulus and a second annulus. A fuel supply system selectively injects fuel into the first annulus and the second annulus, and a centerbody that includes a plurality of struts radially extending from a central hub receives the inlet fluid mixed with fuel, thereby creating fluid swirl.
Abstract:
A grid valve may include an annular stationary plate having a first annular surface, and an annular rotatable plate disposed on the annular stationary plate and rotatable relative to the annular stationary plate. The annular rotatable plate may have a second annular surface, and each of the annular stationary plate and the annular rotatable plate may define a plurality of holes in the respective annular surfaces thereof. The grid valve may further include a first magnet disposed on the first annular surface and a second magnet disposed on the second annular surface such that the first magnet repels the second magnet.
Abstract:
A support assembly and method for supporting an internal assembly in a casing of a turbomachine are provided. The support assembly may include a support member that may be slidably disposed in a recess formed in the internal assembly and configured to engage an inner surface of the casing. A biasing member may be disposed in a pocket extending radially inward from the recess. The biasing member may at least partially extend into the recess and may be configured to apply a biasing force to the support member disposed therein.
Abstract:
A stator can for an electric motor of a motor-compressor is provided. The stator can may include an annular body configured to be disposed radially outward of a rotor of the electric motor. An inner radial surface of the annular body and an outer radial surface of the rotor may at least partially define a radial gap therebetween, and a first axial end portion of the annular body may at least partially define an inlet of the radial gap. The stator can may include a plurality of swirl breaks disposed about the first axial end portion of the annular body. The plurality of swirl breaks may be configured to reduce a swirling flow of the process fluid flowing to the inlet of the radial gap.
Abstract:
A method for producing liquefied natural gas (LNG) is provided. The method may include feeding natural gas from a high-pressure natural gas source to a separator and removing a non-hydrocarbon from the natural gas. A portion of the natural gas from the separator may be precooled, and the precooled natural gas may be cooled in a first heat exchanger with a first refrigeration stream. A first portion of the cooled natural gas may be expanded in a turbo-expander to generate the first refrigeration stream. A second portion of the cooled natural gas may be cooled in a second heat exchanger with the first refrigeration stream and expanded in an expansion valve to produce a two-phase fluid containing the LNG and a vapor phase. The LNG may be separated from the vapor phase in a liquid separator and stored in a storage tank.
Abstract:
A radial magnetic bearing may include an annular housing including a radial outer wall disposed between radially outer ends of two annular axial end plates and an isolation sleeve which may include a helical arrangement of a plurality of ferromagnetic wires. The isolation sleeve may be an annular structure extending axially between the two annular axial end plates, and the isolation sleeve and the annular housing may define an isolation cavity therebetween. The radial magnetic bearing may also include an isolation sleeve retainer configured to maintain a position of the isolation sleeve between the two annular axial end plates. The radial magnetic bearing may further include a plurality of laminations disposed adjacent the isolation sleeve and about a shaft of the rotating machine. A gap may be defined between the plurality of laminations and the isolation sleeve.
Abstract:
A method is provided for fabricating iron castings for metallic components. The method for fabricating the iron castings may include forming a molten solution by melting carbon and iron and combining carbon nanomaterials with the molten solution. A first portion of the carbon nanomaterials combined with the molten solution may be dispersed therein. The method may also include cooling the molten solution to solidify at least a portion of the carbon thereof to fabricate the iron castings. The first portion of the carbon nanomaterials may be dispersed in the iron castings.
Abstract:
A method is provided for fabricating a carbon nanotube metal matrix composite. The method may include forming a molten mixture by combining carbon nanotubes with a molten solution. The carbon nanotubes combined with the molten solution may be dispersed therein. The method may also include transferring the molten mixture to a mold and applying a magnetic field to the molten mixture in the mold to substantially align at least a portion of the carbon nanotubes with one another. The method may further include solidifying the molten mixture in the mold to fabricate the carbon nanotube metal matrix composite, where at least a portion of the carbon nanotubes may be substantially aligned in the carbon nanotube metal matrix composite.
Abstract:
A system and method are provided for a terminal assembly of a subsea motor-compressor. The terminal assembly may include a plurality of terminal ports extending through a hollow spherical body to a cavity defined therein. The terminal assembly may also include a penetrator detachably coupled with the spherical body about each of the plurality of terminal ports. The terminal assembly may further include a mounting port extending through the spherical body to the cavity defined therein. The mounting port may be configured to couple the terminal assembly with a housing of the motor-compressor.
Abstract:
A clamping and support system for a turbine is disclosed. The clamping and support system may include a support bar coupled with a lower diaphragm portion of the turbine. The support bar may have a protuberance extending from a first end portion thereof that may at least partially extend into a slot formed in the lower diaphragm portion of the turbine. The clamping and support system may also include a clamping bar coupled with a second end portion of the support bar. The clamping bar may at least partially extend into a slot formed in an upper diaphragm portion of the turbine such that at least a portion of the lower diaphragm portion and at least a portion of the upper diaphragm portion are interposed between the clamping bar and the protuberance of the support bar, thereby coupling the lower diaphragm portion with the upper diaphragm portion.