Abstract:
A support assembly and method for supporting an internal assembly in a casing of a turbomachine are provided. The support assembly may include a support member that may be slidably disposed in a recess formed in the internal assembly and configured to engage an inner surface of the casing. A biasing member may be disposed in a pocket extending radially inward from the recess. The biasing member may at least partially extend into the recess and may be configured to apply a biasing force to the support member disposed therein.
Abstract:
A separator method and apparatus that includes a rotatable drum defining an annular passageway therein, a plurality of blades coupled to the rotatable drum and located in the annular passageway, each of the plurality of blades including a leading section, a trailing section, a concave surface, and a convex surface, the concave and convex surfaces extending from the leading section to the trailing section, each of the plurality of blades disposed circumferentially adjacent to at least another one of the plurality of blades so as to define blade flowpaths therebetween, and a housing at least partially surrounding the rotatable drum and defining a fluid collection chamber fluidly communicating with the annular passageway.
Abstract:
A support assembly and method for supporting an internal assembly in a casing of a turbomachine are provided. The support assembly may include a support member that may be slidably disposed in a recess formed in the internal assembly and configured to engage an inner surface of the casing. A biasing member may be disposed in a pocket extending radially inward from the recess. The biasing member may at least partially extend into the recess and may be configured to apply a biasing force to the support member disposed therein.
Abstract:
A stator can for an electric motor of a motor-compressor is provided. The stator can may include an annular body configured to be disposed radially outward of a rotor of the electric motor. An inner radial surface of the annular body and an outer radial surface of the rotor may at least partially define a radial gap therebetween, and a first axial end portion of the annular body may at least partially define an inlet of the radial gap. The stator can may include a plurality of swirl breaks disposed about the first axial end portion of the annular body. The plurality of swirl breaks may be configured to reduce a swirling flow of the process fluid flowing to the inlet of the radial gap.
Abstract:
A radial magnetic bearing may include an annular housing including a radial outer wall disposed between radially outer ends of two annular axial end plates and an isolation sleeve which may include a helical arrangement of a plurality of ferromagnetic wires. The isolation sleeve may be an annular structure extending axially between the two annular axial end plates, and the isolation sleeve and the annular housing may define an isolation cavity therebetween. The radial magnetic bearing may also include an isolation sleeve retainer configured to maintain a position of the isolation sleeve between the two annular axial end plates. The radial magnetic bearing may further include a plurality of laminations disposed adjacent the isolation sleeve and about a shaft of the rotating machine. A gap may be defined between the plurality of laminations and the isolation sleeve.
Abstract:
A system and method are provided for a terminal assembly of a subsea motor-compressor. The terminal assembly may include a plurality of terminal ports extending through a hollow spherical body to a cavity defined therein. The terminal assembly may also include a penetrator detachably coupled with the spherical body about each of the plurality of terminal ports. The terminal assembly may further include a mounting port extending through the spherical body to the cavity defined therein. The mounting port may be configured to couple the terminal assembly with a housing of the motor-compressor.
Abstract:
A fluid distribution system (208) is provided for a reactor vessel (200) defining a reaction chamber (202). The fluid distribution system (208) may include a radial distribution component (224) positionable within the reaction chamber (202) and adjacent a vessel inlet (212) at an end portion of the reactor vessel (200). The radial distribution component (224) may include one or more annular distribution conduits (230) configured to receive a fluid mixture provided to the reactor vessel (200). The fluid distribution system (208) may also include an axial distribution component (226) positionable within the reaction chamber (202) to extend from the radial distribution component (224) along a longitudinal axis of the reactor vessel (200). The axial distribution component (230) may include a plurality of helical conduits (236) fluidly coupled with the one or more annular distribution conduits (230) and configured to receive the fluid mixture from the one or more annular distribution conduits (230) and to disperse the fuel mixture uniformly within the reaction chamber (202).
Abstract:
A support structure for rotating machinery is provided. The support structure may include a first main hollow support member and a second main hollow support member, each having a longitudinal axis and a square cross-section. The second main hollow support member may be coupled with the first main hollow support member such that the longitudinal axis of the second main hollow support member is substantially perpendicular to the longitudinal axis of the first main hollow support member. The support structure may also include a plurality of secondary support members, each coupled with the first main hollow support member, the second main hollow support member, or the first main hollow support member and the second main hollow support member, and configured to support the rotating machinery disposed on the support structure.
Abstract:
A method for boosting a multiphase fluid is provided. The method may include separating the multiphase fluid into a liquid phase and a gaseous phase in a separator, compressing the gaseous phase in a compressor, and discharging the compressed gaseous phase from the compressor to the discharge line. The method may also include draining the liquid phase from the separator to a liquid reservoir, passively actuating an inlet control valve to flow the liquid phase from the liquid reservoir to a liquid tank, and actively actuating an inlet actuation valve to flow a motive gas from the compressor to the liquid tank to thereby pressurize the liquid phase contained therein. The method may further include passively actuating an outlet control valve to discharge the pressurized liquid phase from the liquid tank to the discharge line, and combining the compressed gaseous phase with the pressurized liquid phase in the discharge line.
Abstract:
A rotor system for a rotating machine, including a rotating shaft, an auxiliary bearing, and a primary bearing configured to provide a bearing and seal combination. The auxiliary bearing may include a support structure extending around a circumference of the rotating shaft, such that an annular gap is defined between the support structure and the rotating shaft when the primary bearing supports the rotating shaft. The auxiliary bearing may also include a first pedestal extending radially-inward from the support structure, and first and second beams extending from opposite sides of the first pedestal in a plane perpendicular to an axis of the shaft. The auxiliary bearing may further include a first roller operatively coupled to the first beam, and a second roller operatively coupled to the second beam, such that the first and second rollers are configured to engage the shaft.