Abstract:
Systems and methods for degassing fluid are disclosed. An example fluid ejection device including a channel having an entrance and an exit; a supply slot in communication with the channel; a vent; a first bubble impeding structure at the entrance of the channel; and a second bubble impeding structure at an exit of the channel, the first and second bubble impeding structures to retain a bubble within the channel to enable the bubble to be vented through a vent and to deter the bubble from entering the ink supply slot.
Abstract:
A fluid ejection device including, at least, one recirculation system is disclosed. Such recirculation system contains, at least, one drop generator, recirculation channels that include an inlet channel, an outlet channel and a connection channel and a fluid feedhole that communicates with the drop generator via the inlet channel and the outlet channel of the recirculation channel. The recirculation channels can be asymmetrical with reference to the drop generator.
Abstract:
Systems and methods for degassing fluid are disclosed. An example fluid ejection device including a channel having an entrance and an exit; a supply slot in communication with the channel; a vent; a first bubble impeding structure at the entrance of the channel; and a second bubble impeding structure at an exit of the channel, the first and second bubble impeding structures to retain a bubble within the channel to enable the bubble to be vented through a vent and to deter the bubble from entering the ink supply slot.
Abstract:
Systems and methods for degassing fluid are disclosed. An example fluid ejection device including a channel having an entrance and an exit; a supply slot in communication with the channel; a vent; a first bubble impeding structure at the entrance of the channel; and a second bubble impeding structure at an exit of the channel, the first and second bubble impeding structures to retain a bubble within the channel to enable the bubble to be vented through a vent and to deter the bubble from entering the ink supply slot.
Abstract:
A microfluidic valve comprises a first reservoir, a second reservoir, an inertial pump and a channel connecting the first reservoir to the second reservoir. The second reservoir is to receive fluid from the first reservoir through the channel under a pressure gradient. The inertial pump is within the channel proximate the second reservoir and distant the first reservoir.
Abstract:
A network of microfluidic channels may include at least three loops interconnected at a junction. Each of the loops may include a fluid channel having a length extending from the junction to a second end; and a fluid actuator along the fluid channel and located at a first distance from junction along the length of the fluid channel and at a second distance less than the first distance from the second end. Activation of the fluid actuator of selected ones of the at least three loops may selectively produce net fluid flow in different directions about the loops. In one implementation, a fluid channel having a fluid actuator may have a bridging portion that extends over another fluid channel.
Abstract:
A method for determining an issue in an inkjet nozzle with impedance measurements, includes taking a first impedance measurement to detect a drive bubble with an impedance sensor; and taking a second impedance measurement to detect said drive bubble with said impedance sensor after said first impedance measurement.
Abstract:
A sensor images drops ejected from a printhead nozzle. The sensor has two parallel spaced-apart rows of imaging pixels. In one example, a lens projects an image of a drop ejected from a printhead onto the rows sequentially as the drop travels along a trajectory.
Abstract:
In an embodiment, a fluid ejection device includes a die substrate having first and second fluid slots along opposite substrate sides and separated by a substrate central region. First and second internal columns of closed chambers are associated with the first and second slots, respectively, and the internal columns are separated by the central region. Fluidic channels extending across the central region fluidically couple closed chambers from the first internal column with closed chambers from the second internal column. Pump actuators in each closed chamber pump fluid through the channels from slot to slot.
Abstract:
A method for determining an issue in an inkjet nozzle with impedance measurements, includes taking a first impedance measurement to detect a drive bubble with an impedance sensor; and taking a second impedance measurement to detect said drive bubble with said impedance sensor after said first impedance measurement.